Properties

Label 704.2.s
Level $704$
Weight $2$
Character orbit 704.s
Rep. character $\chi_{704}(95,\cdot)$
Character field $\Q(\zeta_{10})$
Dimension $96$
Newform subspaces $5$
Sturm bound $192$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 704 = 2^{6} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 704.s (of order \(10\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 88 \)
Character field: \(\Q(\zeta_{10})\)
Newform subspaces: \( 5 \)
Sturm bound: \(192\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(3\), \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(704, [\chi])\).

Total New Old
Modular forms 432 96 336
Cusp forms 336 96 240
Eisenstein series 96 0 96

Trace form

\( 96 q - 24 q^{9} + 24 q^{25} + 24 q^{33} - 24 q^{49} - 72 q^{81} + 96 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(704, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
704.2.s.a 704.s 88.k $8$ $5.621$ \(\Q(\zeta_{20})\) None 704.2.s.a \(0\) \(-8\) \(0\) \(0\) $\mathrm{SU}(2)[C_{10}]$ \(q+(2\beta_{6}-\beta_{4}+\beta_{2}-2)q^{3}+(\beta_{5}-\beta_{3})q^{5}+\cdots\)
704.2.s.b 704.s 88.k $8$ $5.621$ \(\Q(\zeta_{20})\) None 704.2.s.b \(0\) \(0\) \(-10\) \(0\) $\mathrm{SU}(2)[C_{10}]$ \(q+(-\zeta_{20}^{5}-\zeta_{20}^{7})q^{3}+(-1-\zeta_{20}^{6}+\cdots)q^{5}+\cdots\)
704.2.s.c 704.s 88.k $8$ $5.621$ \(\Q(\zeta_{20})\) None 704.2.s.b \(0\) \(0\) \(10\) \(0\) $\mathrm{SU}(2)[C_{10}]$ \(q+(-\zeta_{20}^{5}-\zeta_{20}^{7})q^{3}+(1+\zeta_{20}^{6}+\cdots)q^{5}+\cdots\)
704.2.s.d 704.s 88.k $8$ $5.621$ \(\Q(\zeta_{20})\) None 704.2.s.a \(0\) \(8\) \(0\) \(0\) $\mathrm{SU}(2)[C_{10}]$ \(q+(-2\beta_{6}+\beta_{4}-\beta_{2}+2)q^{3}+(-\beta_{5}+\beta_{3})q^{5}+\cdots\)
704.2.s.e 704.s 88.k $64$ $5.621$ None 704.2.s.e \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{10}]$

Decomposition of \(S_{2}^{\mathrm{old}}(704, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(704, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(88, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(352, [\chi])\)\(^{\oplus 2}\)