Properties

Label 704.2.s
Level 704704
Weight 22
Character orbit 704.s
Rep. character χ704(95,)\chi_{704}(95,\cdot)
Character field Q(ζ10)\Q(\zeta_{10})
Dimension 9696
Newform subspaces 55
Sturm bound 192192
Trace bound 55

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 704=2611 704 = 2^{6} \cdot 11
Weight: k k == 2 2
Character orbit: [χ][\chi] == 704.s (of order 1010 and degree 44)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 88 88
Character field: Q(ζ10)\Q(\zeta_{10})
Newform subspaces: 5 5
Sturm bound: 192192
Trace bound: 55
Distinguishing TpT_p: 33, 55

Dimensions

The following table gives the dimensions of various subspaces of M2(704,[χ])M_{2}(704, [\chi]).

Total New Old
Modular forms 432 96 336
Cusp forms 336 96 240
Eisenstein series 96 0 96

Trace form

96q24q9+24q25+24q3324q4972q81+96q97+O(q100) 96 q - 24 q^{9} + 24 q^{25} + 24 q^{33} - 24 q^{49} - 72 q^{81} + 96 q^{97}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(704,[χ])S_{2}^{\mathrm{new}}(704, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
704.2.s.a 704.s 88.k 88 5.6215.621 Q(ζ20)\Q(\zeta_{20}) None 704.2.s.a 00 8-8 00 00 SU(2)[C10]\mathrm{SU}(2)[C_{10}] q+(2β6β4+β22)q3+(β5β3)q5+q+(2\beta_{6}-\beta_{4}+\beta_{2}-2)q^{3}+(\beta_{5}-\beta_{3})q^{5}+\cdots
704.2.s.b 704.s 88.k 88 5.6215.621 Q(ζ20)\Q(\zeta_{20}) None 704.2.s.b 00 00 10-10 00 SU(2)[C10]\mathrm{SU}(2)[C_{10}] q+(ζ205ζ207)q3+(1ζ206+)q5+q+(-\zeta_{20}^{5}-\zeta_{20}^{7})q^{3}+(-1-\zeta_{20}^{6}+\cdots)q^{5}+\cdots
704.2.s.c 704.s 88.k 88 5.6215.621 Q(ζ20)\Q(\zeta_{20}) None 704.2.s.b 00 00 1010 00 SU(2)[C10]\mathrm{SU}(2)[C_{10}] q+(ζ205ζ207)q3+(1+ζ206+)q5+q+(-\zeta_{20}^{5}-\zeta_{20}^{7})q^{3}+(1+\zeta_{20}^{6}+\cdots)q^{5}+\cdots
704.2.s.d 704.s 88.k 88 5.6215.621 Q(ζ20)\Q(\zeta_{20}) None 704.2.s.a 00 88 00 00 SU(2)[C10]\mathrm{SU}(2)[C_{10}] q+(2β6+β4β2+2)q3+(β5+β3)q5+q+(-2\beta_{6}+\beta_{4}-\beta_{2}+2)q^{3}+(-\beta_{5}+\beta_{3})q^{5}+\cdots
704.2.s.e 704.s 88.k 6464 5.6215.621 None 704.2.s.e 00 00 00 00 SU(2)[C10]\mathrm{SU}(2)[C_{10}]

Decomposition of S2old(704,[χ])S_{2}^{\mathrm{old}}(704, [\chi]) into lower level spaces

S2old(704,[χ]) S_{2}^{\mathrm{old}}(704, [\chi]) \simeq S2new(88,[χ])S_{2}^{\mathrm{new}}(88, [\chi])4^{\oplus 4}\oplusS2new(352,[χ])S_{2}^{\mathrm{new}}(352, [\chi])2^{\oplus 2}