Defining parameters
Level: | \( N \) | \(=\) | \( 7056 = 2^{4} \cdot 3^{2} \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 7056.c (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 8 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 0 \) | ||
Sturm bound: | \(2688\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(7056, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1408 | 0 | 1408 |
Cusp forms | 1280 | 0 | 1280 |
Eisenstein series | 128 | 0 | 128 |
Decomposition of \(S_{2}^{\mathrm{old}}(7056, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(7056, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(24, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(56, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(72, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(168, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(392, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(504, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1176, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(3528, [\chi])\)\(^{\oplus 2}\)