Properties

Label 72.21.e
Level $72$
Weight $21$
Character orbit 72.e
Rep. character $\chi_{72}(17,\cdot)$
Character field $\Q$
Dimension $20$
Newform subspaces $2$
Sturm bound $252$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 72 = 2^{3} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 21 \)
Character orbit: \([\chi]\) \(=\) 72.e (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 3 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(252\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{21}(72, [\chi])\).

Total New Old
Modular forms 248 20 228
Cusp forms 232 20 212
Eisenstein series 16 0 16

Trace form

\( 20 q + 187327248 q^{7} - 164244011776 q^{13} - 13445754640448 q^{19} - 388496127759764 q^{25} - 423277661451824 q^{31} - 86\!\cdots\!16 q^{37} + 66\!\cdots\!28 q^{43} + 32\!\cdots\!64 q^{49} + 10\!\cdots\!44 q^{55}+ \cdots + 23\!\cdots\!72 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{21}^{\mathrm{new}}(72, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
72.21.e.a 72.e 3.b $10$ $182.530$ \(\mathbb{Q}[x]/(x^{10} + \cdots)\) None 72.21.e.a \(0\) \(0\) \(0\) \(-489367704\) $\mathrm{SU}(2)[C_{2}]$ \(q+(732773\beta _{5}+\beta _{6})q^{5}+(-48936770+\cdots)q^{7}+\cdots\)
72.21.e.b 72.e 3.b $10$ $182.530$ \(\mathbb{Q}[x]/(x^{10} + \cdots)\) None 72.21.e.b \(0\) \(0\) \(0\) \(676694952\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-806622\beta _{5}+\beta _{6})q^{5}+(67669493+\cdots)q^{7}+\cdots\)

Decomposition of \(S_{21}^{\mathrm{old}}(72, [\chi])\) into lower level spaces

\( S_{21}^{\mathrm{old}}(72, [\chi]) \simeq \) \(S_{21}^{\mathrm{new}}(3, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{21}^{\mathrm{new}}(6, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{21}^{\mathrm{new}}(9, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{21}^{\mathrm{new}}(12, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{21}^{\mathrm{new}}(18, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{21}^{\mathrm{new}}(24, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{21}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 2}\)