Defining parameters
Level: | \( N \) | \(=\) | \( 72 = 2^{3} \cdot 3^{2} \) |
Weight: | \( k \) | \(=\) | \( 21 \) |
Character orbit: | \([\chi]\) | \(=\) | 72.e (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 3 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(252\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{21}(72, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 248 | 20 | 228 |
Cusp forms | 232 | 20 | 212 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{21}^{\mathrm{new}}(72, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
72.21.e.a | $10$ | $182.530$ | \(\mathbb{Q}[x]/(x^{10} + \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(-489367704\) | \(q+(732773\beta _{5}+\beta _{6})q^{5}+(-48936770+\cdots)q^{7}+\cdots\) |
72.21.e.b | $10$ | $182.530$ | \(\mathbb{Q}[x]/(x^{10} + \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(676694952\) | \(q+(-806622\beta _{5}+\beta _{6})q^{5}+(67669493+\cdots)q^{7}+\cdots\) |
Decomposition of \(S_{21}^{\mathrm{old}}(72, [\chi])\) into lower level spaces
\( S_{21}^{\mathrm{old}}(72, [\chi]) \simeq \) \(S_{21}^{\mathrm{new}}(3, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{21}^{\mathrm{new}}(6, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{21}^{\mathrm{new}}(9, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{21}^{\mathrm{new}}(12, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{21}^{\mathrm{new}}(18, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{21}^{\mathrm{new}}(24, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{21}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 2}\)