Properties

Label 72.21.e
Level 7272
Weight 2121
Character orbit 72.e
Rep. character χ72(17,)\chi_{72}(17,\cdot)
Character field Q\Q
Dimension 2020
Newform subspaces 22
Sturm bound 252252
Trace bound 77

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 72=2332 72 = 2^{3} \cdot 3^{2}
Weight: k k == 21 21
Character orbit: [χ][\chi] == 72.e (of order 22 and degree 11)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 3 3
Character field: Q\Q
Newform subspaces: 2 2
Sturm bound: 252252
Trace bound: 77
Distinguishing TpT_p: 55

Dimensions

The following table gives the dimensions of various subspaces of M21(72,[χ])M_{21}(72, [\chi]).

Total New Old
Modular forms 248 20 228
Cusp forms 232 20 212
Eisenstein series 16 0 16

Trace form

20q+187327248q7164244011776q1313445754640448q19388496127759764q25423277661451824q3186 ⁣ ⁣16q37+66 ⁣ ⁣28q43+32 ⁣ ⁣64q49+10 ⁣ ⁣44q55++23 ⁣ ⁣72q97+O(q100) 20 q + 187327248 q^{7} - 164244011776 q^{13} - 13445754640448 q^{19} - 388496127759764 q^{25} - 423277661451824 q^{31} - 86\!\cdots\!16 q^{37} + 66\!\cdots\!28 q^{43} + 32\!\cdots\!64 q^{49} + 10\!\cdots\!44 q^{55}+ \cdots + 23\!\cdots\!72 q^{97}+O(q^{100}) Copy content Toggle raw display

Decomposition of S21new(72,[χ])S_{21}^{\mathrm{new}}(72, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
72.21.e.a 72.e 3.b 1010 182.530182.530 Q[x]/(x10+)\mathbb{Q}[x]/(x^{10} + \cdots) None 72.21.e.a 00 00 00 489367704-489367704 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+(732773β5+β6)q5+(48936770+)q7+q+(732773\beta _{5}+\beta _{6})q^{5}+(-48936770+\cdots)q^{7}+\cdots
72.21.e.b 72.e 3.b 1010 182.530182.530 Q[x]/(x10+)\mathbb{Q}[x]/(x^{10} + \cdots) None 72.21.e.b 00 00 00 676694952676694952 SU(2)[C2]\mathrm{SU}(2)[C_{2}] q+(806622β5+β6)q5+(67669493+)q7+q+(-806622\beta _{5}+\beta _{6})q^{5}+(67669493+\cdots)q^{7}+\cdots

Decomposition of S21old(72,[χ])S_{21}^{\mathrm{old}}(72, [\chi]) into lower level spaces