Properties

Label 72.4.a
Level 7272
Weight 44
Character orbit 72.a
Rep. character χ72(1,)\chi_{72}(1,\cdot)
Character field Q\Q
Dimension 44
Newform subspaces 44
Sturm bound 4848
Trace bound 55

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 72=2332 72 = 2^{3} \cdot 3^{2}
Weight: k k == 4 4
Character orbit: [χ][\chi] == 72.a (trivial)
Character field: Q\Q
Newform subspaces: 4 4
Sturm bound: 4848
Trace bound: 55
Distinguishing TpT_p: 55

Dimensions

The following table gives the dimensions of various subspaces of M4(Γ0(72))M_{4}(\Gamma_0(72)).

Total New Old
Modular forms 44 4 40
Cusp forms 28 4 24
Eisenstein series 16 0 16

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

2233FrickeDim
++++++11
++--11
-++-11
--++11
Plus space++22
Minus space-22

Trace form

4q12q524q7+72q11+64q13132q17136q19+48q23+212q2560q2940q31+384q35168q3784q41344q43768q47+68q49+372q53++800q97+O(q100) 4 q - 12 q^{5} - 24 q^{7} + 72 q^{11} + 64 q^{13} - 132 q^{17} - 136 q^{19} + 48 q^{23} + 212 q^{25} - 60 q^{29} - 40 q^{31} + 384 q^{35} - 168 q^{37} - 84 q^{41} - 344 q^{43} - 768 q^{47} + 68 q^{49} + 372 q^{53}+ \cdots + 800 q^{97}+O(q^{100}) Copy content Toggle raw display

Decomposition of S4new(Γ0(72))S_{4}^{\mathrm{new}}(\Gamma_0(72)) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces A-L signs Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7} 2 3
72.4.a.a 72.a 1.a 11 4.2484.248 Q\Q None 72.4.a.a 00 00 16-16 12-12 - ++ SU(2)\mathrm{SU}(2) q24q512q726q11+58q13+q-2^{4}q^{5}-12q^{7}-2^{6}q^{11}+58q^{13}+\cdots
72.4.a.b 72.a 1.a 11 4.2484.248 Q\Q None 24.4.a.a 00 00 14-14 24-24 ++ - SU(2)\mathrm{SU}(2) q14q524q7+28q1174q13+q-14q^{5}-24q^{7}+28q^{11}-74q^{13}+\cdots
72.4.a.c 72.a 1.a 11 4.2484.248 Q\Q None 8.4.a.a 00 00 22 2424 - - SU(2)\mathrm{SU}(2) q+2q5+24q7+44q11+22q13+q+2q^{5}+24q^{7}+44q^{11}+22q^{13}+\cdots
72.4.a.d 72.a 1.a 11 4.2484.248 Q\Q None 72.4.a.a 00 00 1616 12-12 ++ ++ SU(2)\mathrm{SU}(2) q+24q512q7+26q11+58q13+q+2^{4}q^{5}-12q^{7}+2^{6}q^{11}+58q^{13}+\cdots

Decomposition of S4old(Γ0(72))S_{4}^{\mathrm{old}}(\Gamma_0(72)) into lower level spaces