Properties

Label 72.5
Level 72
Weight 5
Dimension 247
Nonzero newspaces 6
Newform subspaces 11
Sturm bound 1440
Trace bound 2

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 72 = 2^{3} \cdot 3^{2} \)
Weight: \( k \) = \( 5 \)
Nonzero newspaces: \( 6 \)
Newform subspaces: \( 11 \)
Sturm bound: \(1440\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{5}(\Gamma_1(72))\).

Total New Old
Modular forms 624 265 359
Cusp forms 528 247 281
Eisenstein series 96 18 78

Trace form

\( 247 q - 14 q^{4} + 28 q^{6} - 50 q^{7} - 102 q^{8} - 108 q^{9} - 72 q^{10} + 156 q^{11} + 226 q^{12} + 256 q^{13} + 594 q^{14} + 78 q^{15} + 134 q^{16} - 126 q^{17} - 1954 q^{19} + 1098 q^{20} + 24 q^{21}+ \cdots + 40566 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{5}^{\mathrm{new}}(\Gamma_1(72))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
72.5.b \(\chi_{72}(19, \cdot)\) 72.5.b.a 1 1
72.5.b.b 2
72.5.b.c 8
72.5.b.d 8
72.5.e \(\chi_{72}(17, \cdot)\) 72.5.e.a 2 1
72.5.e.b 2
72.5.g \(\chi_{72}(55, \cdot)\) None 0 1
72.5.h \(\chi_{72}(53, \cdot)\) 72.5.h.a 16 1
72.5.j \(\chi_{72}(5, \cdot)\) 72.5.j.a 92 2
72.5.k \(\chi_{72}(7, \cdot)\) None 0 2
72.5.m \(\chi_{72}(41, \cdot)\) 72.5.m.a 24 2
72.5.p \(\chi_{72}(43, \cdot)\) 72.5.p.a 4 2
72.5.p.b 88

Decomposition of \(S_{5}^{\mathrm{old}}(\Gamma_1(72))\) into lower level spaces

\( S_{5}^{\mathrm{old}}(\Gamma_1(72)) \cong \) \(S_{5}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 9}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 8}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 6}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 6}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 3}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 4}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 4}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 3}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(24))\)\(^{\oplus 2}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(36))\)\(^{\oplus 2}\)