Defining parameters
Level: | \( N \) | = | \( 72 = 2^{3} \cdot 3^{2} \) |
Weight: | \( k \) | = | \( 5 \) |
Nonzero newspaces: | \( 6 \) | ||
Newform subspaces: | \( 11 \) | ||
Sturm bound: | \(1440\) | ||
Trace bound: | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{5}(\Gamma_1(72))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 624 | 265 | 359 |
Cusp forms | 528 | 247 | 281 |
Eisenstein series | 96 | 18 | 78 |
Trace form
Decomposition of \(S_{5}^{\mathrm{new}}(\Gamma_1(72))\)
We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Decomposition of \(S_{5}^{\mathrm{old}}(\Gamma_1(72))\) into lower level spaces
\( S_{5}^{\mathrm{old}}(\Gamma_1(72)) \cong \) \(S_{5}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 9}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 8}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 6}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 6}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 3}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 4}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 4}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 3}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(24))\)\(^{\oplus 2}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(36))\)\(^{\oplus 2}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(72))\)\(^{\oplus 1}\)