Defining parameters
Level: | \( N \) | \(=\) | \( 720 = 2^{4} \cdot 3^{2} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 720.bm (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 80 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 8 \) | ||
Sturm bound: | \(288\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(7\), \(11\), \(13\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(720, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 304 | 124 | 180 |
Cusp forms | 272 | 116 | 156 |
Eisenstein series | 32 | 8 | 24 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(720, [\chi])\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(720, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(720, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(80, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(240, [\chi])\)\(^{\oplus 2}\)