Properties

Label 720.4.x
Level 720720
Weight 44
Character orbit 720.x
Rep. character χ720(127,)\chi_{720}(127,\cdot)
Character field Q(ζ4)\Q(\zeta_{4})
Dimension 9090
Newform subspaces 99
Sturm bound 576576
Trace bound 55

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 720=24325 720 = 2^{4} \cdot 3^{2} \cdot 5
Weight: k k == 4 4
Character orbit: [χ][\chi] == 720.x (of order 44 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 20 20
Character field: Q(i)\Q(i)
Newform subspaces: 9 9
Sturm bound: 576576
Trace bound: 55
Distinguishing TpT_p: 77, 1313, 1717

Dimensions

The following table gives the dimensions of various subspaces of M4(720,[χ])M_{4}(720, [\chi]).

Total New Old
Modular forms 912 90 822
Cusp forms 816 90 726
Eisenstein series 96 0 96

Trace form

90q138q13+78q1766q25198q37888q41+450q53606q65+2730q731752q771842q85870q97+O(q100) 90 q - 138 q^{13} + 78 q^{17} - 66 q^{25} - 198 q^{37} - 888 q^{41} + 450 q^{53} - 606 q^{65} + 2730 q^{73} - 1752 q^{77} - 1842 q^{85} - 870 q^{97}+O(q^{100}) Copy content Toggle raw display

Decomposition of S4new(720,[χ])S_{4}^{\mathrm{new}}(720, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
720.4.x.a 720.x 20.e 22 42.48142.481 Q(1)\Q(\sqrt{-1}) Q(1)\Q(\sqrt{-1}) 720.4.x.a 00 00 22-22 00 U(1)[D4]\mathrm{U}(1)[D_{4}] q+(2i11)q5+(37i+37)q13+q+(2 i-11)q^{5}+(-37 i+37)q^{13}+\cdots
720.4.x.b 720.x 20.e 22 42.48142.481 Q(1)\Q(\sqrt{-1}) Q(1)\Q(\sqrt{-1}) 80.4.n.a 00 00 4-4 00 U(1)[D4]\mathrm{U}(1)[D_{4}] q+(11i2)q5+(55i+55)q13+q+(11 i-2)q^{5}+(-55 i+55)q^{13}+\cdots
720.4.x.c 720.x 20.e 22 42.48142.481 Q(1)\Q(\sqrt{-1}) Q(1)\Q(\sqrt{-1}) 720.4.x.a 00 00 2222 00 U(1)[D4]\mathrm{U}(1)[D_{4}] q+(2i+11)q5+(37i+37)q13+q+(-2 i+11)q^{5}+(-37 i+37)q^{13}+\cdots
720.4.x.d 720.x 20.e 44 42.48142.481 Q(i,35)\Q(i, \sqrt{35}) None 80.4.n.b 00 00 2020 00 SU(2)[C4]\mathrm{SU}(2)[C_{4}] q+(5+10β1)q5β2q7+(5β2+5β3)q11+q+(5+10\beta _{1})q^{5}-\beta _{2}q^{7}+(-5\beta _{2}+5\beta _{3})q^{11}+\cdots
720.4.x.e 720.x 20.e 88 42.48142.481 8.0.\cdots.31 None 720.4.x.e 00 00 00 00 SU(2)[C4]\mathrm{SU}(2)[C_{4}] q+(4β1+3β3)q5+β4q7β6q11+q+(4\beta _{1}+3\beta _{3})q^{5}+\beta _{4}q^{7}-\beta _{6}q^{11}+\cdots
720.4.x.f 720.x 20.e 1212 42.48142.481 Q[x]/(x12)\mathbb{Q}[x]/(x^{12} - \cdots) None 240.4.w.a 00 00 32-32 00 SU(2)[C4]\mathrm{SU}(2)[C_{4}] q+(3+β5)q5+β11q7β10q11+q+(-3+\beta _{5})q^{5}+\beta _{11}q^{7}-\beta _{10}q^{11}+\cdots
720.4.x.g 720.x 20.e 1212 42.48142.481 Q[x]/(x12)\mathbb{Q}[x]/(x^{12} - \cdots) None 80.4.n.c 00 00 16-16 00 SU(2)[C4]\mathrm{SU}(2)[C_{4}] q+(1β1β4)q5+(2β2β9)q7+q+(-1-\beta _{1}-\beta _{4})q^{5}+(2\beta _{2}-\beta _{9})q^{7}+\cdots
720.4.x.h 720.x 20.e 2424 42.48142.481 None 720.4.x.h 00 00 00 00 SU(2)[C4]\mathrm{SU}(2)[C_{4}]
720.4.x.i 720.x 20.e 2424 42.48142.481 None 240.4.w.b 00 00 3232 00 SU(2)[C4]\mathrm{SU}(2)[C_{4}]

Decomposition of S4old(720,[χ])S_{4}^{\mathrm{old}}(720, [\chi]) into lower level spaces

S4old(720,[χ]) S_{4}^{\mathrm{old}}(720, [\chi]) \simeq S4new(20,[χ])S_{4}^{\mathrm{new}}(20, [\chi])9^{\oplus 9}\oplusS4new(60,[χ])S_{4}^{\mathrm{new}}(60, [\chi])6^{\oplus 6}\oplusS4new(80,[χ])S_{4}^{\mathrm{new}}(80, [\chi])3^{\oplus 3}\oplusS4new(180,[χ])S_{4}^{\mathrm{new}}(180, [\chi])3^{\oplus 3}\oplusS4new(240,[χ])S_{4}^{\mathrm{new}}(240, [\chi])2^{\oplus 2}