Properties

Label 720.4.x
Level $720$
Weight $4$
Character orbit 720.x
Rep. character $\chi_{720}(127,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $90$
Newform subspaces $9$
Sturm bound $576$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 720 = 2^{4} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 720.x (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 20 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 9 \)
Sturm bound: \(576\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(7\), \(13\), \(17\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(720, [\chi])\).

Total New Old
Modular forms 912 90 822
Cusp forms 816 90 726
Eisenstein series 96 0 96

Trace form

\( 90 q - 138 q^{13} + 78 q^{17} - 66 q^{25} - 198 q^{37} - 888 q^{41} + 450 q^{53} - 606 q^{65} + 2730 q^{73} - 1752 q^{77} - 1842 q^{85} - 870 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(720, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
720.4.x.a 720.x 20.e $2$ $42.481$ \(\Q(\sqrt{-1}) \) \(\Q(\sqrt{-1}) \) 720.4.x.a \(0\) \(0\) \(-22\) \(0\) $\mathrm{U}(1)[D_{4}]$ \(q+(2 i-11)q^{5}+(-37 i+37)q^{13}+\cdots\)
720.4.x.b 720.x 20.e $2$ $42.481$ \(\Q(\sqrt{-1}) \) \(\Q(\sqrt{-1}) \) 80.4.n.a \(0\) \(0\) \(-4\) \(0\) $\mathrm{U}(1)[D_{4}]$ \(q+(11 i-2)q^{5}+(-55 i+55)q^{13}+\cdots\)
720.4.x.c 720.x 20.e $2$ $42.481$ \(\Q(\sqrt{-1}) \) \(\Q(\sqrt{-1}) \) 720.4.x.a \(0\) \(0\) \(22\) \(0\) $\mathrm{U}(1)[D_{4}]$ \(q+(-2 i+11)q^{5}+(-37 i+37)q^{13}+\cdots\)
720.4.x.d 720.x 20.e $4$ $42.481$ \(\Q(i, \sqrt{35})\) None 80.4.n.b \(0\) \(0\) \(20\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+(5+10\beta _{1})q^{5}-\beta _{2}q^{7}+(-5\beta _{2}+5\beta _{3})q^{11}+\cdots\)
720.4.x.e 720.x 20.e $8$ $42.481$ 8.0.\(\cdots\).31 None 720.4.x.e \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+(4\beta _{1}+3\beta _{3})q^{5}+\beta _{4}q^{7}-\beta _{6}q^{11}+\cdots\)
720.4.x.f 720.x 20.e $12$ $42.481$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 240.4.w.a \(0\) \(0\) \(-32\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-3+\beta _{5})q^{5}+\beta _{11}q^{7}-\beta _{10}q^{11}+\cdots\)
720.4.x.g 720.x 20.e $12$ $42.481$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 80.4.n.c \(0\) \(0\) \(-16\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-1-\beta _{1}-\beta _{4})q^{5}+(2\beta _{2}-\beta _{9})q^{7}+\cdots\)
720.4.x.h 720.x 20.e $24$ $42.481$ None 720.4.x.h \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$
720.4.x.i 720.x 20.e $24$ $42.481$ None 240.4.w.b \(0\) \(0\) \(32\) \(0\) $\mathrm{SU}(2)[C_{4}]$

Decomposition of \(S_{4}^{\mathrm{old}}(720, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(720, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(60, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(80, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(180, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(240, [\chi])\)\(^{\oplus 2}\)