Properties

Label 7200.2.b
Level $7200$
Weight $2$
Character orbit 7200.b
Rep. character $\chi_{7200}(4751,\cdot)$
Character field $\Q$
Dimension $76$
Newform subspaces $9$
Sturm bound $2880$
Trace bound $67$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 7200 = 2^{5} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7200.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 24 \)
Character field: \(\Q\)
Newform subspaces: \( 9 \)
Sturm bound: \(2880\)
Trace bound: \(67\)
Distinguishing \(T_p\): \(7\), \(23\), \(43\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(7200, [\chi])\).

Total New Old
Modular forms 1536 76 1460
Cusp forms 1344 76 1268
Eisenstein series 192 0 192

Trace form

\( 76 q - 16 q^{19} + 32 q^{43} - 92 q^{49} + 16 q^{67} - 16 q^{73} - 48 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(7200, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
7200.2.b.a 7200.b 24.f $2$ $57.492$ \(\Q(\sqrt{-2}) \) None 360.2.b.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+3\beta q^{7}+\beta q^{11}-3\beta q^{13}-2\beta q^{17}+\cdots\)
7200.2.b.b 7200.b 24.f $2$ $57.492$ \(\Q(\sqrt{-2}) \) None 360.2.b.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+3\beta q^{7}-\beta q^{11}-3\beta q^{13}+2\beta q^{17}+\cdots\)
7200.2.b.c 7200.b 24.f $4$ $57.492$ \(\Q(\sqrt{-2}, \sqrt{-3})\) None 72.2.f.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{3}q^{7}+2\beta _{1}q^{11}+\beta _{3}q^{13}-\beta _{1}q^{17}+\cdots\)
7200.2.b.d 7200.b 24.f $6$ $57.492$ 6.0.2580992.1 None 360.2.b.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{1}q^{7}+(-\beta _{1}-\beta _{3})q^{11}+(\beta _{1}-\beta _{3}+\cdots)q^{13}+\cdots\)
7200.2.b.e 7200.b 24.f $6$ $57.492$ 6.0.2580992.1 None 360.2.b.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{1}q^{7}+(\beta _{1}+\beta _{3})q^{11}+(\beta _{1}-\beta _{3}+\cdots)q^{13}+\cdots\)
7200.2.b.f 7200.b 24.f $8$ $57.492$ 8.0.40960000.1 \(\Q(\sqrt{-10}) \) 360.2.m.a \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q-\beta _{4}q^{7}+\beta _{2}q^{11}+\beta _{3}q^{13}+\beta _{7}q^{19}+\cdots\)
7200.2.b.g 7200.b 24.f $16$ $57.492$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 1800.2.b.h \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{13}q^{7}+\beta _{15}q^{11}-\beta _{10}q^{13}+(\beta _{6}+\cdots)q^{17}+\cdots\)
7200.2.b.h 7200.b 24.f $16$ $57.492$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 1800.2.b.h \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{13}q^{7}-\beta _{15}q^{11}-\beta _{10}q^{13}+(\beta _{6}+\cdots)q^{17}+\cdots\)
7200.2.b.i 7200.b 24.f $16$ $57.492$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 360.2.m.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{11}q^{7}+(-\beta _{7}-\beta _{8})q^{11}+\beta _{6}q^{13}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(7200, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(7200, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(24, [\chi])\)\(^{\oplus 18}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(72, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(96, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(120, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(288, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(360, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(480, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(600, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1440, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1800, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2400, [\chi])\)\(^{\oplus 2}\)