Defining parameters
Level: | \( N \) | \(=\) | \( 722 = 2 \cdot 19^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 722.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 14 \) | ||
Sturm bound: | \(190\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(3\), \(5\), \(7\), \(13\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(722))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 115 | 28 | 87 |
Cusp forms | 76 | 28 | 48 |
Eisenstein series | 39 | 0 | 39 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(19\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(6\) |
\(+\) | \(-\) | \(-\) | \(8\) |
\(-\) | \(+\) | \(-\) | \(10\) |
\(-\) | \(-\) | \(+\) | \(4\) |
Plus space | \(+\) | \(10\) | |
Minus space | \(-\) | \(18\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(722))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(722))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(722)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(19))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(38))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(361))\)\(^{\oplus 2}\)