Properties

Label 725.2.a
Level $725$
Weight $2$
Character orbit 725.a
Rep. character $\chi_{725}(1,\cdot)$
Character field $\Q$
Dimension $45$
Newform subspaces $12$
Sturm bound $150$
Trace bound $4$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 725 = 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 725.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 12 \)
Sturm bound: \(150\)
Trace bound: \(4\)
Distinguishing \(T_p\): \(2\), \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(725))\).

Total New Old
Modular forms 80 45 35
Cusp forms 69 45 24
Eisenstein series 11 0 11

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(5\)\(29\)FrickeDim
\(+\)\(+\)\(+\)\(9\)
\(+\)\(-\)\(-\)\(12\)
\(-\)\(+\)\(-\)\(15\)
\(-\)\(-\)\(+\)\(9\)
Plus space\(+\)\(18\)
Minus space\(-\)\(27\)

Trace form

\( 45 q + q^{2} + 2 q^{3} + 43 q^{4} - 2 q^{6} + 4 q^{7} - 3 q^{8} + 51 q^{9} - 6 q^{11} + 6 q^{12} + 12 q^{13} - 12 q^{14} + 23 q^{16} + 10 q^{17} + 15 q^{18} + 4 q^{19} + 20 q^{21} - 14 q^{22} - 16 q^{23}+ \cdots - 67 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(725))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 5 29
725.2.a.a 725.a 1.a $1$ $5.789$ \(\Q\) None 145.2.a.a \(1\) \(0\) \(0\) \(2\) $+$ $+$ $\mathrm{SU}(2)$ \(q+q^{2}-q^{4}+2q^{7}-3q^{8}-3q^{9}-6q^{11}+\cdots\)
725.2.a.b 725.a 1.a $2$ $5.789$ \(\Q(\sqrt{2}) \) None 29.2.a.a \(2\) \(-2\) \(0\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(1+\beta )q^{2}+(-1-\beta )q^{3}+(1+2\beta )q^{4}+\cdots\)
725.2.a.c 725.a 1.a $2$ $5.789$ \(\Q(\sqrt{2}) \) None 145.2.a.b \(2\) \(4\) \(0\) \(4\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(1+\beta )q^{2}+2q^{3}+(1+2\beta )q^{4}+(2+\cdots)q^{6}+\cdots\)
725.2.a.d 725.a 1.a $3$ $5.789$ 3.3.148.1 None 145.2.a.d \(-3\) \(2\) \(0\) \(2\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(-1-\beta _{2})q^{2}+(1-\beta _{1}-\beta _{2})q^{3}+\cdots\)
725.2.a.e 725.a 1.a $3$ $5.789$ 3.3.148.1 None 145.2.a.c \(-1\) \(-2\) \(0\) \(-4\) $+$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+(-1+\beta _{1}+\beta _{2})q^{3}+(\beta _{1}+\cdots)q^{4}+\cdots\)
725.2.a.f 725.a 1.a $4$ $5.789$ \(\Q(\zeta_{24})^+\) None 145.2.b.b \(0\) \(0\) \(0\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(-\beta _{1}-\beta _{3})q^{3}+\beta _{2}q^{4}+\cdots\)
725.2.a.g 725.a 1.a $4$ $5.789$ \(\Q(\sqrt{3}, \sqrt{11})\) None 145.2.b.a \(0\) \(0\) \(0\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{2}q^{2}+\beta _{1}q^{3}+q^{4}+(-2-\beta _{3})q^{6}+\cdots\)
725.2.a.h 725.a 1.a $5$ $5.789$ 5.5.240881.1 None 725.2.a.h \(-2\) \(-6\) \(0\) \(-6\) $-$ $-$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+(-1+\beta _{4})q^{3}+(1+\beta _{2})q^{4}+\cdots\)
725.2.a.i 725.a 1.a $5$ $5.789$ 5.5.294577.1 None 725.2.a.i \(0\) \(-6\) \(0\) \(-10\) $+$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(-1+\beta _{3})q^{3}+(1+\beta _{2}-\beta _{3}+\cdots)q^{4}+\cdots\)
725.2.a.j 725.a 1.a $5$ $5.789$ 5.5.294577.1 None 725.2.a.i \(0\) \(6\) \(0\) \(10\) $-$ $+$ $\mathrm{SU}(2)$ \(q-\beta _{1}q^{2}+(1-\beta _{3})q^{3}+(1+\beta _{2}-\beta _{3}+\cdots)q^{4}+\cdots\)
725.2.a.k 725.a 1.a $5$ $5.789$ 5.5.240881.1 None 725.2.a.h \(2\) \(6\) \(0\) \(6\) $+$ $-$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(1-\beta _{4})q^{3}+(1+\beta _{2})q^{4}+\cdots\)
725.2.a.l 725.a 1.a $6$ $5.789$ 6.6.337383424.1 None 145.2.b.c \(0\) \(0\) \(0\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q+\beta _{1}q^{2}+(\beta _{1}-\beta _{4})q^{3}+(2+\beta _{2})q^{4}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(725))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_0(725)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(29))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(145))\)\(^{\oplus 2}\)