Properties

Label 725.2.a
Level 725725
Weight 22
Character orbit 725.a
Rep. character χ725(1,)\chi_{725}(1,\cdot)
Character field Q\Q
Dimension 4545
Newform subspaces 1212
Sturm bound 150150
Trace bound 44

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 725=5229 725 = 5^{2} \cdot 29
Weight: k k == 2 2
Character orbit: [χ][\chi] == 725.a (trivial)
Character field: Q\Q
Newform subspaces: 12 12
Sturm bound: 150150
Trace bound: 44
Distinguishing TpT_p: 22, 33

Dimensions

The following table gives the dimensions of various subspaces of M2(Γ0(725))M_{2}(\Gamma_0(725)).

Total New Old
Modular forms 80 45 35
Cusp forms 69 45 24
Eisenstein series 11 0 11

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

552929FrickeDim
++++++99
++--1212
-++-1515
--++99
Plus space++1818
Minus space-2727

Trace form

45q+q2+2q3+43q42q6+4q73q8+51q96q11+6q12+12q1312q14+23q16+10q17+15q18+4q19+20q2114q2216q23+67q98+O(q100) 45 q + q^{2} + 2 q^{3} + 43 q^{4} - 2 q^{6} + 4 q^{7} - 3 q^{8} + 51 q^{9} - 6 q^{11} + 6 q^{12} + 12 q^{13} - 12 q^{14} + 23 q^{16} + 10 q^{17} + 15 q^{18} + 4 q^{19} + 20 q^{21} - 14 q^{22} - 16 q^{23}+ \cdots - 67 q^{98}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(Γ0(725))S_{2}^{\mathrm{new}}(\Gamma_0(725)) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces A-L signs Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7} 5 29
725.2.a.a 725.a 1.a 11 5.7895.789 Q\Q None 145.2.a.a 11 00 00 22 ++ ++ SU(2)\mathrm{SU}(2) q+q2q4+2q73q83q96q11+q+q^{2}-q^{4}+2q^{7}-3q^{8}-3q^{9}-6q^{11}+\cdots
725.2.a.b 725.a 1.a 22 5.7895.789 Q(2)\Q(\sqrt{2}) None 29.2.a.a 22 2-2 00 00 ++ - SU(2)\mathrm{SU}(2) q+(1+β)q2+(1β)q3+(1+2β)q4+q+(1+\beta )q^{2}+(-1-\beta )q^{3}+(1+2\beta )q^{4}+\cdots
725.2.a.c 725.a 1.a 22 5.7895.789 Q(2)\Q(\sqrt{2}) None 145.2.a.b 22 44 00 44 ++ - SU(2)\mathrm{SU}(2) q+(1+β)q2+2q3+(1+2β)q4+(2+)q6+q+(1+\beta )q^{2}+2q^{3}+(1+2\beta )q^{4}+(2+\cdots)q^{6}+\cdots
725.2.a.d 725.a 1.a 33 5.7895.789 3.3.148.1 None 145.2.a.d 3-3 22 00 22 ++ - SU(2)\mathrm{SU}(2) q+(1β2)q2+(1β1β2)q3+q+(-1-\beta _{2})q^{2}+(1-\beta _{1}-\beta _{2})q^{3}+\cdots
725.2.a.e 725.a 1.a 33 5.7895.789 3.3.148.1 None 145.2.a.c 1-1 2-2 00 4-4 ++ ++ SU(2)\mathrm{SU}(2) qβ1q2+(1+β1+β2)q3+(β1+)q4+q-\beta _{1}q^{2}+(-1+\beta _{1}+\beta _{2})q^{3}+(\beta _{1}+\cdots)q^{4}+\cdots
725.2.a.f 725.a 1.a 44 5.7895.789 Q(ζ24)+\Q(\zeta_{24})^+ None 145.2.b.b 00 00 00 00 - - SU(2)\mathrm{SU}(2) q+β1q2+(β1β3)q3+β2q4+q+\beta _{1}q^{2}+(-\beta _{1}-\beta _{3})q^{3}+\beta _{2}q^{4}+\cdots
725.2.a.g 725.a 1.a 44 5.7895.789 Q(3,11)\Q(\sqrt{3}, \sqrt{11}) None 145.2.b.a 00 00 00 00 - ++ SU(2)\mathrm{SU}(2) qβ2q2+β1q3+q4+(2β3)q6+q-\beta _{2}q^{2}+\beta _{1}q^{3}+q^{4}+(-2-\beta _{3})q^{6}+\cdots
725.2.a.h 725.a 1.a 55 5.7895.789 5.5.240881.1 None 725.2.a.h 2-2 6-6 00 6-6 - - SU(2)\mathrm{SU}(2) qβ1q2+(1+β4)q3+(1+β2)q4+q-\beta _{1}q^{2}+(-1+\beta _{4})q^{3}+(1+\beta _{2})q^{4}+\cdots
725.2.a.i 725.a 1.a 55 5.7895.789 5.5.294577.1 None 725.2.a.i 00 6-6 00 10-10 ++ ++ SU(2)\mathrm{SU}(2) q+β1q2+(1+β3)q3+(1+β2β3+)q4+q+\beta _{1}q^{2}+(-1+\beta _{3})q^{3}+(1+\beta _{2}-\beta _{3}+\cdots)q^{4}+\cdots
725.2.a.j 725.a 1.a 55 5.7895.789 5.5.294577.1 None 725.2.a.i 00 66 00 1010 - ++ SU(2)\mathrm{SU}(2) qβ1q2+(1β3)q3+(1+β2β3+)q4+q-\beta _{1}q^{2}+(1-\beta _{3})q^{3}+(1+\beta _{2}-\beta _{3}+\cdots)q^{4}+\cdots
725.2.a.k 725.a 1.a 55 5.7895.789 5.5.240881.1 None 725.2.a.h 22 66 00 66 ++ - SU(2)\mathrm{SU}(2) q+β1q2+(1β4)q3+(1+β2)q4+q+\beta _{1}q^{2}+(1-\beta _{4})q^{3}+(1+\beta _{2})q^{4}+\cdots
725.2.a.l 725.a 1.a 66 5.7895.789 6.6.337383424.1 None 145.2.b.c 00 00 00 00 - ++ SU(2)\mathrm{SU}(2) q+β1q2+(β1β4)q3+(2+β2)q4+q+\beta _{1}q^{2}+(\beta _{1}-\beta _{4})q^{3}+(2+\beta _{2})q^{4}+\cdots

Decomposition of S2old(Γ0(725))S_{2}^{\mathrm{old}}(\Gamma_0(725)) into lower level spaces

S2old(Γ0(725)) S_{2}^{\mathrm{old}}(\Gamma_0(725)) \simeq S2new(Γ0(29))S_{2}^{\mathrm{new}}(\Gamma_0(29))3^{\oplus 3}\oplusS2new(Γ0(145))S_{2}^{\mathrm{new}}(\Gamma_0(145))2^{\oplus 2}