Defining parameters
Level: | \( N \) | \(=\) | \( 725 = 5^{2} \cdot 29 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 725.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 12 \) | ||
Sturm bound: | \(150\) | ||
Trace bound: | \(4\) | ||
Distinguishing \(T_p\): | \(2\), \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(725))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 80 | 45 | 35 |
Cusp forms | 69 | 45 | 24 |
Eisenstein series | 11 | 0 | 11 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(5\) | \(29\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(9\) |
\(+\) | \(-\) | \(-\) | \(12\) |
\(-\) | \(+\) | \(-\) | \(15\) |
\(-\) | \(-\) | \(+\) | \(9\) |
Plus space | \(+\) | \(18\) | |
Minus space | \(-\) | \(27\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(725))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(725))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(725)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(29))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(145))\)\(^{\oplus 2}\)