Defining parameters
Level: | \( N \) | \(=\) | \( 728 = 2^{3} \cdot 7 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 728.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 728 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(224\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(728, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 116 | 116 | 0 |
Cusp forms | 108 | 108 | 0 |
Eisenstein series | 8 | 8 | 0 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(728, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
728.2.b.a | $12$ | $5.813$ | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | \(\Q(\sqrt{-26}) \) | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{3}q^{2}+(-\beta _{1}-\beta _{7})q^{3}+2q^{4}+(-\beta _{4}+\cdots)q^{5}+\cdots\) |
728.2.b.b | $96$ | $5.813$ | None | \(0\) | \(0\) | \(0\) | \(0\) |