Properties

Label 728.2.b
Level $728$
Weight $2$
Character orbit 728.b
Rep. character $\chi_{728}(363,\cdot)$
Character field $\Q$
Dimension $108$
Newform subspaces $2$
Sturm bound $224$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 728 = 2^{3} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 728.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 728 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(224\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(728, [\chi])\).

Total New Old
Modular forms 116 116 0
Cusp forms 108 108 0
Eisenstein series 8 8 0

Trace form

\( 108 q - 4 q^{4} - 108 q^{9} + 2 q^{14} + 12 q^{16} + 28 q^{22} - 100 q^{25} + 20 q^{30} + 16 q^{35} + 12 q^{36} - 30 q^{42} - 8 q^{43} + 12 q^{49} + 16 q^{51} - 22 q^{56} + 44 q^{64} + 16 q^{65} + 16 q^{74}+ \cdots + 4 q^{92}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(728, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
728.2.b.a 728.b 728.b $12$ $5.813$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) \(\Q(\sqrt{-26}) \) 728.2.b.a \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q-\beta _{3}q^{2}+(-\beta _{1}-\beta _{7})q^{3}+2q^{4}+(-\beta _{4}+\cdots)q^{5}+\cdots\)
728.2.b.b 728.b 728.b $96$ $5.813$ None 728.2.b.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$