Defining parameters
Level: | \( N \) | \(=\) | \( 728 = 2^{3} \cdot 7 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 728.ba (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 728 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(224\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(728, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 232 | 232 | 0 |
Cusp forms | 216 | 216 | 0 |
Eisenstein series | 16 | 16 | 0 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(728, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
728.2.ba.a | $4$ | $5.813$ | \(\Q(i, \sqrt{14})\) | None | \(-4\) | \(-4\) | \(-4\) | \(0\) | \(q+(-1-\beta _{2})q^{2}-q^{3}+2\beta _{2}q^{4}+(-1+\cdots)q^{5}+\cdots\) |
728.2.ba.b | $4$ | $5.813$ | \(\Q(i, \sqrt{14})\) | None | \(-4\) | \(4\) | \(4\) | \(0\) | \(q+(-1-\beta _{2})q^{2}+q^{3}+2\beta _{2}q^{4}+(1+\cdots)q^{5}+\cdots\) |
728.2.ba.c | $8$ | $5.813$ | 8.0.\(\cdots\).8 | \(\Q(\sqrt{-14}) \) | \(-8\) | \(0\) | \(0\) | \(0\) | \(q+(-1-\beta _{3})q^{2}+(-\beta _{1}-\beta _{5})q^{3}+2\beta _{3}q^{4}+\cdots\) |
728.2.ba.d | $8$ | $5.813$ | 8.0.\(\cdots\).8 | \(\Q(\sqrt{-14}) \) | \(8\) | \(0\) | \(0\) | \(0\) | \(q+(1-\beta _{3})q^{2}+(-\beta _{4}-\beta _{6})q^{3}-2\beta _{3}q^{4}+\cdots\) |
728.2.ba.e | $192$ | $5.813$ | None | \(4\) | \(0\) | \(0\) | \(-4\) |