Properties

Label 729.2.g
Level 729729
Weight 22
Character orbit 729.g
Rep. character χ729(28,)\chi_{729}(28,\cdot)
Character field Q(ζ27)\Q(\zeta_{27})
Dimension 576576
Newform subspaces 44
Sturm bound 162162
Trace bound 2020

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 729=36 729 = 3^{6}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 729.g (of order 2727 and degree 1818)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 81 81
Character field: Q(ζ27)\Q(\zeta_{27})
Newform subspaces: 4 4
Sturm bound: 162162
Trace bound: 2020
Distinguishing TpT_p: 22

Dimensions

The following table gives the dimensions of various subspaces of M2(729,[χ])M_{2}(729, [\chi]).

Total New Old
Modular forms 1620 720 900
Cusp forms 1296 576 720
Eisenstein series 324 144 180

Trace form

576q+36q4+36q772q10+36q13+36q1672q19+36q22+36q2536q28+36q31+36q3472q37+36q40+36q4372q46+36q4936q55+18q97+O(q100) 576 q + 36 q^{4} + 36 q^{7} - 72 q^{10} + 36 q^{13} + 36 q^{16} - 72 q^{19} + 36 q^{22} + 36 q^{25} - 36 q^{28} + 36 q^{31} + 36 q^{34} - 72 q^{37} + 36 q^{40} + 36 q^{43} - 72 q^{46} + 36 q^{49} - 36 q^{55}+ \cdots - 18 q^{97}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(729,[χ])S_{2}^{\mathrm{new}}(729, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
729.2.g.a 729.g 81.g 144144 5.8215.821 None 81.2.g.a 9-9 00 9-9 99 SU(2)[C27]\mathrm{SU}(2)[C_{27}]
729.2.g.b 729.g 81.g 144144 5.8215.821 None 81.2.g.a 9-9 00 9-9 99 SU(2)[C27]\mathrm{SU}(2)[C_{27}]
729.2.g.c 729.g 81.g 144144 5.8215.821 None 81.2.g.a 99 00 99 99 SU(2)[C27]\mathrm{SU}(2)[C_{27}]
729.2.g.d 729.g 81.g 144144 5.8215.821 None 81.2.g.a 99 00 99 99 SU(2)[C27]\mathrm{SU}(2)[C_{27}]

Decomposition of S2old(729,[χ])S_{2}^{\mathrm{old}}(729, [\chi]) into lower level spaces

S2old(729,[χ]) S_{2}^{\mathrm{old}}(729, [\chi]) \simeq S2new(81,[χ])S_{2}^{\mathrm{new}}(81, [\chi])3^{\oplus 3}\oplusS2new(243,[χ])S_{2}^{\mathrm{new}}(243, [\chi])2^{\oplus 2}