Properties

Label 735.2.i
Level 735735
Weight 22
Character orbit 735.i
Rep. character χ735(226,)\chi_{735}(226,\cdot)
Character field Q(ζ3)\Q(\zeta_{3})
Dimension 5252
Newform subspaces 1414
Sturm bound 224224
Trace bound 44

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 735=3572 735 = 3 \cdot 5 \cdot 7^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 735.i (of order 33 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 7 7
Character field: Q(ζ3)\Q(\zeta_{3})
Newform subspaces: 14 14
Sturm bound: 224224
Trace bound: 44
Distinguishing TpT_p: 22, 1313, 1717

Dimensions

The following table gives the dimensions of various subspaces of M2(735,[χ])M_{2}(735, [\chi]).

Total New Old
Modular forms 256 52 204
Cusp forms 192 52 140
Eisenstein series 64 0 64

Trace form

52q8q22q332q4+48q826q94q1012q114q12+4q1336q16+8q178q18+6q1916q208q2216q23+12q2426q25++24q99+O(q100) 52 q - 8 q^{2} - 2 q^{3} - 32 q^{4} + 48 q^{8} - 26 q^{9} - 4 q^{10} - 12 q^{11} - 4 q^{12} + 4 q^{13} - 36 q^{16} + 8 q^{17} - 8 q^{18} + 6 q^{19} - 16 q^{20} - 8 q^{22} - 16 q^{23} + 12 q^{24} - 26 q^{25}+ \cdots + 24 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(735,[χ])S_{2}^{\mathrm{new}}(735, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
735.2.i.a 735.i 7.c 22 5.8695.869 Q(3)\Q(\sqrt{-3}) None 105.2.a.a 1-1 1-1 1-1 00 SU(2)[C3]\mathrm{SU}(2)[C_{3}] qζ6q2+(1+ζ6)q3+(1ζ6)q4+q-\zeta_{6}q^{2}+(-1+\zeta_{6})q^{3}+(1-\zeta_{6})q^{4}+\cdots
735.2.i.b 735.i 7.c 22 5.8695.869 Q(3)\Q(\sqrt{-3}) None 105.2.a.a 1-1 11 11 00 SU(2)[C3]\mathrm{SU}(2)[C_{3}] qζ6q2+(1ζ6)q3+(1ζ6)q4+q-\zeta_{6}q^{2}+(1-\zeta_{6})q^{3}+(1-\zeta_{6})q^{4}+\cdots
735.2.i.c 735.i 7.c 22 5.8695.869 Q(3)\Q(\sqrt{-3}) None 105.2.i.a 00 11 1-1 00 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(1ζ6)q3+(22ζ6)q4ζ6q5+q+(1-\zeta_{6})q^{3}+(2-2\zeta_{6})q^{4}-\zeta_{6}q^{5}+\cdots
735.2.i.d 735.i 7.c 22 5.8695.869 Q(3)\Q(\sqrt{-3}) None 15.2.a.a 11 1-1 11 00 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+ζ6q2+(1+ζ6)q3+(1ζ6)q4+q+\zeta_{6}q^{2}+(-1+\zeta_{6})q^{3}+(1-\zeta_{6})q^{4}+\cdots
735.2.i.e 735.i 7.c 22 5.8695.869 Q(3)\Q(\sqrt{-3}) None 15.2.a.a 11 11 1-1 00 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+ζ6q2+(1ζ6)q3+(1ζ6)q4+q+\zeta_{6}q^{2}+(1-\zeta_{6})q^{3}+(1-\zeta_{6})q^{4}+\cdots
735.2.i.f 735.i 7.c 22 5.8695.869 Q(3)\Q(\sqrt{-3}) None 105.2.i.b 22 11 11 00 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+2ζ6q2+(1ζ6)q3+(2+2ζ6)q4+q+2\zeta_{6}q^{2}+(1-\zeta_{6})q^{3}+(-2+2\zeta_{6})q^{4}+\cdots
735.2.i.g 735.i 7.c 44 5.8695.869 Q(2,3)\Q(\sqrt{2}, \sqrt{-3}) None 735.2.a.l 2-2 2-2 2-2 00 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(1+β1β2)q2+β2q3+(2β1+)q4+q+(-1+\beta _{1}-\beta _{2})q^{2}+\beta _{2}q^{3}+(-2\beta _{1}+\cdots)q^{4}+\cdots
735.2.i.h 735.i 7.c 44 5.8695.869 Q(2,3)\Q(\sqrt{2}, \sqrt{-3}) None 735.2.a.l 2-2 22 22 00 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(1+β1β2)q2β2q3+(2β1+)q4+q+(-1+\beta _{1}-\beta _{2})q^{2}-\beta _{2}q^{3}+(-2\beta _{1}+\cdots)q^{4}+\cdots
735.2.i.i 735.i 7.c 44 5.8695.869 Q(3,5)\Q(\sqrt{-3}, \sqrt{5}) None 105.2.a.b 00 2-2 2-2 00 SU(2)[C3]\mathrm{SU}(2)[C_{3}] qβ2q2+β1q3+3β1q4+(1β1+)q5+q-\beta _{2}q^{2}+\beta _{1}q^{3}+3\beta _{1}q^{4}+(-1-\beta _{1}+\cdots)q^{5}+\cdots
735.2.i.j 735.i 7.c 44 5.8695.869 Q(2,3)\Q(\sqrt{2}, \sqrt{-3}) None 105.2.i.c 00 2-2 2-2 00 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+β1q2+β2q3+(1β2)q5+β3q6+q+\beta _{1}q^{2}+\beta _{2}q^{3}+(-1-\beta _{2})q^{5}+\beta _{3}q^{6}+\cdots
735.2.i.k 735.i 7.c 44 5.8695.869 Q(3,5)\Q(\sqrt{-3}, \sqrt{5}) None 105.2.a.b 00 22 22 00 SU(2)[C3]\mathrm{SU}(2)[C_{3}] qβ2q2β1q3+3β1q4+(1+β1+)q5+q-\beta _{2}q^{2}-\beta _{1}q^{3}+3\beta _{1}q^{4}+(1+\beta _{1}+\cdots)q^{5}+\cdots
735.2.i.l 735.i 7.c 44 5.8695.869 Q(ζ12)\Q(\zeta_{12}) None 105.2.i.d 22 2-2 22 00 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(β2+β1)q2+(β11)q3+q+(-\beta_{2}+\beta_1)q^{2}+(\beta_1-1)q^{3}+\cdots
735.2.i.m 735.i 7.c 88 5.8695.869 8.0.\cdots.10 None 735.2.a.n 4-4 4-4 44 00 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(1β1β5)q2+β5q3+(β1+)q4+q+(-1-\beta _{1}-\beta _{5})q^{2}+\beta _{5}q^{3}+(\beta _{1}+\cdots)q^{4}+\cdots
735.2.i.n 735.i 7.c 88 5.8695.869 8.0.\cdots.10 None 735.2.a.n 4-4 44 4-4 00 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(1β1β5)q2β5q3+(β1+)q4+q+(-1-\beta _{1}-\beta _{5})q^{2}-\beta _{5}q^{3}+(\beta _{1}+\cdots)q^{4}+\cdots

Decomposition of S2old(735,[χ])S_{2}^{\mathrm{old}}(735, [\chi]) into lower level spaces

S2old(735,[χ]) S_{2}^{\mathrm{old}}(735, [\chi]) \simeq S2new(21,[χ])S_{2}^{\mathrm{new}}(21, [\chi])4^{\oplus 4}\oplusS2new(35,[χ])S_{2}^{\mathrm{new}}(35, [\chi])4^{\oplus 4}\oplusS2new(49,[χ])S_{2}^{\mathrm{new}}(49, [\chi])4^{\oplus 4}\oplusS2new(105,[χ])S_{2}^{\mathrm{new}}(105, [\chi])2^{\oplus 2}\oplusS2new(147,[χ])S_{2}^{\mathrm{new}}(147, [\chi])2^{\oplus 2}\oplusS2new(245,[χ])S_{2}^{\mathrm{new}}(245, [\chi])2^{\oplus 2}