Defining parameters
Level: | \( N \) | = | \( 736 = 2^{5} \cdot 23 \) |
Weight: | \( k \) | = | \( 4 \) |
Nonzero newspaces: | \( 12 \) | ||
Sturm bound: | \(135168\) | ||
Trace bound: | \(9\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(736))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 51392 | 28614 | 22778 |
Cusp forms | 49984 | 28194 | 21790 |
Eisenstein series | 1408 | 420 | 988 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(736))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
736.4.a | \(\chi_{736}(1, \cdot)\) | 736.4.a.a | 3 | 1 |
736.4.a.b | 3 | |||
736.4.a.c | 4 | |||
736.4.a.d | 4 | |||
736.4.a.e | 8 | |||
736.4.a.f | 8 | |||
736.4.a.g | 9 | |||
736.4.a.h | 9 | |||
736.4.a.i | 9 | |||
736.4.a.j | 9 | |||
736.4.b | \(\chi_{736}(369, \cdot)\) | 736.4.b.a | 30 | 1 |
736.4.b.b | 36 | |||
736.4.c | \(\chi_{736}(735, \cdot)\) | 736.4.c.a | 72 | 1 |
736.4.h | \(\chi_{736}(367, \cdot)\) | 736.4.h.a | 2 | 1 |
736.4.h.b | 4 | |||
736.4.h.c | 64 | |||
736.4.i | \(\chi_{736}(183, \cdot)\) | None | 0 | 2 |
736.4.j | \(\chi_{736}(185, \cdot)\) | None | 0 | 2 |
736.4.m | \(\chi_{736}(93, \cdot)\) | n/a | 1056 | 4 |
736.4.n | \(\chi_{736}(91, \cdot)\) | n/a | 1144 | 4 |
736.4.q | \(\chi_{736}(193, \cdot)\) | n/a | 720 | 10 |
736.4.r | \(\chi_{736}(15, \cdot)\) | n/a | 700 | 10 |
736.4.w | \(\chi_{736}(63, \cdot)\) | n/a | 720 | 10 |
736.4.x | \(\chi_{736}(49, \cdot)\) | n/a | 700 | 10 |
736.4.ba | \(\chi_{736}(9, \cdot)\) | None | 0 | 20 |
736.4.bb | \(\chi_{736}(7, \cdot)\) | None | 0 | 20 |
736.4.be | \(\chi_{736}(11, \cdot)\) | n/a | 11440 | 40 |
736.4.bf | \(\chi_{736}(13, \cdot)\) | n/a | 11440 | 40 |
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(736))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_1(736)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 10}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(23))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(32))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(46))\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(92))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(184))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(368))\)\(^{\oplus 2}\)