Properties

Label 736.4
Level 736
Weight 4
Dimension 28194
Nonzero newspaces 12
Sturm bound 135168
Trace bound 9

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 736 = 2^{5} \cdot 23 \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 12 \)
Sturm bound: \(135168\)
Trace bound: \(9\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(736))\).

Total New Old
Modular forms 51392 28614 22778
Cusp forms 49984 28194 21790
Eisenstein series 1408 420 988

Trace form

\( 28194 q - 80 q^{2} - 58 q^{3} - 80 q^{4} - 84 q^{5} - 80 q^{6} - 90 q^{7} - 80 q^{8} - 214 q^{9} - 320 q^{10} - 58 q^{11} + 16 q^{12} + 156 q^{13} + 336 q^{14} + 158 q^{15} + 520 q^{16} + 320 q^{17} + 280 q^{18}+ \cdots + 10782 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(736))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
736.4.a \(\chi_{736}(1, \cdot)\) 736.4.a.a 3 1
736.4.a.b 3
736.4.a.c 4
736.4.a.d 4
736.4.a.e 8
736.4.a.f 8
736.4.a.g 9
736.4.a.h 9
736.4.a.i 9
736.4.a.j 9
736.4.b \(\chi_{736}(369, \cdot)\) 736.4.b.a 30 1
736.4.b.b 36
736.4.c \(\chi_{736}(735, \cdot)\) 736.4.c.a 72 1
736.4.h \(\chi_{736}(367, \cdot)\) 736.4.h.a 2 1
736.4.h.b 4
736.4.h.c 64
736.4.i \(\chi_{736}(183, \cdot)\) None 0 2
736.4.j \(\chi_{736}(185, \cdot)\) None 0 2
736.4.m \(\chi_{736}(93, \cdot)\) n/a 1056 4
736.4.n \(\chi_{736}(91, \cdot)\) n/a 1144 4
736.4.q \(\chi_{736}(193, \cdot)\) n/a 720 10
736.4.r \(\chi_{736}(15, \cdot)\) n/a 700 10
736.4.w \(\chi_{736}(63, \cdot)\) n/a 720 10
736.4.x \(\chi_{736}(49, \cdot)\) n/a 700 10
736.4.ba \(\chi_{736}(9, \cdot)\) None 0 20
736.4.bb \(\chi_{736}(7, \cdot)\) None 0 20
736.4.be \(\chi_{736}(11, \cdot)\) n/a 11440 40
736.4.bf \(\chi_{736}(13, \cdot)\) n/a 11440 40

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(736))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(736)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 10}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(23))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(32))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(46))\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(92))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(184))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(368))\)\(^{\oplus 2}\)