Properties

Label 7360.2
Level 7360
Weight 2
Dimension 830412
Nonzero newspaces 56
Sturm bound 6488064

Downloads

Learn more

Defining parameters

Level: N N = 7360=26523 7360 = 2^{6} \cdot 5 \cdot 23
Weight: k k = 2 2
Nonzero newspaces: 56 56
Sturm bound: 64880646488064

Dimensions

The following table gives the dimensions of various subspaces of M2(Γ1(7360))M_{2}(\Gamma_1(7360)).

Total New Old
Modular forms 1634688 835956 798732
Cusp forms 1609345 830412 778933
Eisenstein series 25343 5544 19799

Decomposition of S2new(Γ1(7360))S_{2}^{\mathrm{new}}(\Gamma_1(7360))

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space Sknew(N,χ) S_k^{\mathrm{new}}(N, \chi) we list available newforms together with their dimension.

Label χ\chi Newforms Dimension χ\chi degree
7360.2.a χ7360(1,)\chi_{7360}(1, \cdot) 7360.2.a.a 1 1
7360.2.a.b 1
7360.2.a.c 1
7360.2.a.d 1
7360.2.a.e 1
7360.2.a.f 1
7360.2.a.g 1
7360.2.a.h 1
7360.2.a.i 1
7360.2.a.j 1
7360.2.a.k 1
7360.2.a.l 1
7360.2.a.m 1
7360.2.a.n 1
7360.2.a.o 1
7360.2.a.p 1
7360.2.a.q 1
7360.2.a.r 1
7360.2.a.s 1
7360.2.a.t 1
7360.2.a.u 1
7360.2.a.v 1
7360.2.a.w 1
7360.2.a.x 1
7360.2.a.y 1
7360.2.a.z 1
7360.2.a.ba 1
7360.2.a.bb 1
7360.2.a.bc 2
7360.2.a.bd 2
7360.2.a.be 2
7360.2.a.bf 2
7360.2.a.bg 2
7360.2.a.bh 2
7360.2.a.bi 2
7360.2.a.bj 2
7360.2.a.bk 2
7360.2.a.bl 2
7360.2.a.bm 2
7360.2.a.bn 2
7360.2.a.bo 2
7360.2.a.bp 2
7360.2.a.bq 2
7360.2.a.br 2
7360.2.a.bs 2
7360.2.a.bt 2
7360.2.a.bu 2
7360.2.a.bv 2
7360.2.a.bw 3
7360.2.a.bx 3
7360.2.a.by 3
7360.2.a.bz 3
7360.2.a.ca 3
7360.2.a.cb 3
7360.2.a.cc 3
7360.2.a.cd 3
7360.2.a.ce 3
7360.2.a.cf 3
7360.2.a.cg 4
7360.2.a.ch 4
7360.2.a.ci 4
7360.2.a.cj 4
7360.2.a.ck 5
7360.2.a.cl 5
7360.2.a.cm 5
7360.2.a.cn 5
7360.2.a.co 5
7360.2.a.cp 5
7360.2.a.cq 5
7360.2.a.cr 5
7360.2.a.cs 5
7360.2.a.ct 5
7360.2.a.cu 6
7360.2.a.cv 6
7360.2.b χ7360(3679,)\chi_{7360}(3679, \cdot) n/a 288 1
7360.2.e χ7360(5889,)\chi_{7360}(5889, \cdot) n/a 264 1
7360.2.f χ7360(3681,)\chi_{7360}(3681, \cdot) n/a 176 1
7360.2.i χ7360(1471,)\chi_{7360}(1471, \cdot) n/a 192 1
7360.2.j χ7360(2209,)\chi_{7360}(2209, \cdot) n/a 264 1
7360.2.m χ7360(7359,)\chi_{7360}(7359, \cdot) n/a 284 1
7360.2.n χ7360(5151,)\chi_{7360}(5151, \cdot) n/a 192 1
7360.2.r χ7360(6577,)\chi_{7360}(6577, \cdot) n/a 568 2
7360.2.t χ7360(47,)\chi_{7360}(47, \cdot) n/a 528 2
7360.2.u χ7360(3311,)\chi_{7360}(3311, \cdot) n/a 384 2
7360.2.x χ7360(1841,)\chi_{7360}(1841, \cdot) n/a 352 2
7360.2.y χ7360(1793,)\chi_{7360}(1793, \cdot) n/a 568 2
7360.2.ba χ7360(2623,)\chi_{7360}(2623, \cdot) n/a 528 2
7360.2.bd χ7360(1887,)\chi_{7360}(1887, \cdot) n/a 528 2
7360.2.bf χ7360(1057,)\chi_{7360}(1057, \cdot) n/a 576 2
7360.2.bg χ7360(369,)\chi_{7360}(369, \cdot) n/a 528 2
7360.2.bj χ7360(1839,)\chi_{7360}(1839, \cdot) n/a 568 2
7360.2.bk χ7360(3727,)\chi_{7360}(3727, \cdot) n/a 528 2
7360.2.bm χ7360(2897,)\chi_{7360}(2897, \cdot) n/a 568 2
7360.2.bp χ7360(1703,)\chi_{7360}(1703, \cdot) None 0 4
7360.2.br χ7360(137,)\chi_{7360}(137, \cdot) None 0 4
7360.2.bs χ7360(919,)\chi_{7360}(919, \cdot) None 0 4
7360.2.bu χ7360(921,)\chi_{7360}(921, \cdot) None 0 4
7360.2.bx χ7360(551,)\chi_{7360}(551, \cdot) None 0 4
7360.2.bz χ7360(1289,)\chi_{7360}(1289, \cdot) None 0 4
7360.2.ca χ7360(967,)\chi_{7360}(967, \cdot) None 0 4
7360.2.cc χ7360(873,)\chi_{7360}(873, \cdot) None 0 4
7360.2.ce χ7360(961,)\chi_{7360}(961, \cdot) n/a 1920 10
7360.2.cg χ7360(413,)\chi_{7360}(413, \cdot) n/a 9184 8
7360.2.ci χ7360(1243,)\chi_{7360}(1243, \cdot) n/a 8448 8
7360.2.ck χ7360(461,)\chi_{7360}(461, \cdot) n/a 5632 8
7360.2.cl χ7360(829,)\chi_{7360}(829, \cdot) n/a 8448 8
7360.2.co χ7360(459,)\chi_{7360}(459, \cdot) n/a 9184 8
7360.2.cp χ7360(91,)\chi_{7360}(91, \cdot) n/a 6144 8
7360.2.cr χ7360(1333,)\chi_{7360}(1333, \cdot) n/a 9184 8
7360.2.ct χ7360(323,)\chi_{7360}(323, \cdot) n/a 8448 8
7360.2.cx χ7360(1631,)\chi_{7360}(1631, \cdot) n/a 1920 10
7360.2.cy χ7360(319,)\chi_{7360}(319, \cdot) n/a 2840 10
7360.2.db χ7360(289,)\chi_{7360}(289, \cdot) n/a 2880 10
7360.2.dc χ7360(191,)\chi_{7360}(191, \cdot) n/a 1920 10
7360.2.df χ7360(1761,)\chi_{7360}(1761, \cdot) n/a 1920 10
7360.2.dg χ7360(449,)\chi_{7360}(449, \cdot) n/a 2840 10
7360.2.dj χ7360(159,)\chi_{7360}(159, \cdot) n/a 2880 10
7360.2.dl χ7360(17,)\chi_{7360}(17, \cdot) n/a 5680 20
7360.2.dn χ7360(303,)\chi_{7360}(303, \cdot) n/a 5680 20
7360.2.dp χ7360(79,)\chi_{7360}(79, \cdot) n/a 5680 20
7360.2.dq χ7360(49,)\chi_{7360}(49, \cdot) n/a 5680 20
7360.2.ds χ7360(33,)\chi_{7360}(33, \cdot) n/a 5760 20
7360.2.du χ7360(223,)\chi_{7360}(223, \cdot) n/a 5760 20
7360.2.dx χ7360(127,)\chi_{7360}(127, \cdot) n/a 5680 20
7360.2.dz χ7360(513,)\chi_{7360}(513, \cdot) n/a 5680 20
7360.2.eb χ7360(81,)\chi_{7360}(81, \cdot) n/a 3840 20
7360.2.ec χ7360(111,)\chi_{7360}(111, \cdot) n/a 3840 20
7360.2.ee χ7360(463,)\chi_{7360}(463, \cdot) n/a 5680 20
7360.2.eg χ7360(273,)\chi_{7360}(273, \cdot) n/a 5680 20
7360.2.ej χ7360(57,)\chi_{7360}(57, \cdot) None 0 40
7360.2.el χ7360(167,)\chi_{7360}(167, \cdot) None 0 40
7360.2.en χ7360(9,)\chi_{7360}(9, \cdot) None 0 40
7360.2.ep χ7360(471,)\chi_{7360}(471, \cdot) None 0 40
7360.2.eq χ7360(41,)\chi_{7360}(41, \cdot) None 0 40
7360.2.es χ7360(199,)\chi_{7360}(199, \cdot) None 0 40
7360.2.eu χ7360(153,)\chi_{7360}(153, \cdot) None 0 40
7360.2.ew χ7360(87,)\chi_{7360}(87, \cdot) None 0 40
7360.2.ey χ7360(3,)\chi_{7360}(3, \cdot) n/a 91840 80
7360.2.fa χ7360(53,)\chi_{7360}(53, \cdot) n/a 91840 80
7360.2.fd χ7360(11,)\chi_{7360}(11, \cdot) n/a 61440 80
7360.2.fe χ7360(19,)\chi_{7360}(19, \cdot) n/a 91840 80
7360.2.fh χ7360(29,)\chi_{7360}(29, \cdot) n/a 91840 80
7360.2.fi χ7360(101,)\chi_{7360}(101, \cdot) n/a 61440 80
7360.2.fl χ7360(123,)\chi_{7360}(123, \cdot) n/a 91840 80
7360.2.fn χ7360(37,)\chi_{7360}(37, \cdot) n/a 91840 80

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of S2old(Γ1(7360))S_{2}^{\mathrm{old}}(\Gamma_1(7360)) into lower level spaces

S2old(Γ1(7360)) S_{2}^{\mathrm{old}}(\Gamma_1(7360)) \cong S2new(Γ1(1))S_{2}^{\mathrm{new}}(\Gamma_1(1))28^{\oplus 28}\oplusS2new(Γ1(2))S_{2}^{\mathrm{new}}(\Gamma_1(2))24^{\oplus 24}\oplusS2new(Γ1(4))S_{2}^{\mathrm{new}}(\Gamma_1(4))20^{\oplus 20}\oplusS2new(Γ1(5))S_{2}^{\mathrm{new}}(\Gamma_1(5))14^{\oplus 14}\oplusS2new(Γ1(8))S_{2}^{\mathrm{new}}(\Gamma_1(8))16^{\oplus 16}\oplusS2new(Γ1(10))S_{2}^{\mathrm{new}}(\Gamma_1(10))12^{\oplus 12}\oplusS2new(Γ1(16))S_{2}^{\mathrm{new}}(\Gamma_1(16))12^{\oplus 12}\oplusS2new(Γ1(20))S_{2}^{\mathrm{new}}(\Gamma_1(20))10^{\oplus 10}\oplusS2new(Γ1(23))S_{2}^{\mathrm{new}}(\Gamma_1(23))14^{\oplus 14}\oplusS2new(Γ1(32))S_{2}^{\mathrm{new}}(\Gamma_1(32))8^{\oplus 8}\oplusS2new(Γ1(40))S_{2}^{\mathrm{new}}(\Gamma_1(40))8^{\oplus 8}\oplusS2new(Γ1(46))S_{2}^{\mathrm{new}}(\Gamma_1(46))12^{\oplus 12}\oplusS2new(Γ1(64))S_{2}^{\mathrm{new}}(\Gamma_1(64))4^{\oplus 4}\oplusS2new(Γ1(80))S_{2}^{\mathrm{new}}(\Gamma_1(80))6^{\oplus 6}\oplusS2new(Γ1(92))S_{2}^{\mathrm{new}}(\Gamma_1(92))10^{\oplus 10}\oplusS2new(Γ1(115))S_{2}^{\mathrm{new}}(\Gamma_1(115))7^{\oplus 7}\oplusS2new(Γ1(160))S_{2}^{\mathrm{new}}(\Gamma_1(160))4^{\oplus 4}\oplusS2new(Γ1(184))S_{2}^{\mathrm{new}}(\Gamma_1(184))8^{\oplus 8}\oplusS2new(Γ1(230))S_{2}^{\mathrm{new}}(\Gamma_1(230))6^{\oplus 6}\oplusS2new(Γ1(320))S_{2}^{\mathrm{new}}(\Gamma_1(320))2^{\oplus 2}\oplusS2new(Γ1(368))S_{2}^{\mathrm{new}}(\Gamma_1(368))6^{\oplus 6}\oplusS2new(Γ1(460))S_{2}^{\mathrm{new}}(\Gamma_1(460))5^{\oplus 5}\oplusS2new(Γ1(736))S_{2}^{\mathrm{new}}(\Gamma_1(736))4^{\oplus 4}\oplusS2new(Γ1(920))S_{2}^{\mathrm{new}}(\Gamma_1(920))4^{\oplus 4}\oplusS2new(Γ1(1472))S_{2}^{\mathrm{new}}(\Gamma_1(1472))2^{\oplus 2}\oplusS2new(Γ1(1840))S_{2}^{\mathrm{new}}(\Gamma_1(1840))3^{\oplus 3}\oplusS2new(Γ1(3680))S_{2}^{\mathrm{new}}(\Gamma_1(3680))2^{\oplus 2}