Defining parameters
Level: | \( N \) | \(=\) | \( 74 = 2 \cdot 37 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 74.f (of order \(9\) and degree \(6\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 37 \) |
Character field: | \(\Q(\zeta_{9})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(19\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(74, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 66 | 18 | 48 |
Cusp forms | 42 | 18 | 24 |
Eisenstein series | 24 | 0 | 24 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(74, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
74.2.f.a | $6$ | $0.591$ | \(\Q(\zeta_{18})\) | None | \(0\) | \(-3\) | \(3\) | \(6\) | \(q+(-\zeta_{18}+\zeta_{18}^{4})q^{2}+(-\zeta_{18}-\zeta_{18}^{3}+\cdots)q^{3}+\cdots\) |
74.2.f.b | $12$ | $0.591$ | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | None | \(0\) | \(-3\) | \(-6\) | \(6\) | \(q+(\beta _{4}-\beta _{7})q^{2}+(-1+\beta _{1}-\beta _{8})q^{3}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(74, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(74, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(37, [\chi])\)\(^{\oplus 2}\)