Defining parameters
Level: | \( N \) | = | \( 74 = 2 \cdot 37 \) |
Weight: | \( k \) | = | \( 8 \) |
Nonzero newspaces: | \( 6 \) | ||
Newform subspaces: | \( 11 \) | ||
Sturm bound: | \(2736\) | ||
Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_1(74))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1233 | 397 | 836 |
Cusp forms | 1161 | 397 | 764 |
Eisenstein series | 72 | 0 | 72 |
Trace form
Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_1(74))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Decomposition of \(S_{8}^{\mathrm{old}}(\Gamma_1(74))\) into lower level spaces
\( S_{8}^{\mathrm{old}}(\Gamma_1(74)) \cong \) \(S_{8}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(37))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(74))\)\(^{\oplus 1}\)