Properties

Label 74.8
Level 74
Weight 8
Dimension 397
Nonzero newspaces 6
Newform subspaces 11
Sturm bound 2736
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 74 = 2 \cdot 37 \)
Weight: \( k \) = \( 8 \)
Nonzero newspaces: \( 6 \)
Newform subspaces: \( 11 \)
Sturm bound: \(2736\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(\Gamma_1(74))\).

Total New Old
Modular forms 1233 397 836
Cusp forms 1161 397 764
Eisenstein series 72 0 72

Trace form

\( 397 q + 16 q^{2} - 24 q^{3} - 128 q^{4} + 420 q^{5} + 192 q^{6} - 2032 q^{7} + 1024 q^{8} + 4086 q^{9} - 3360 q^{10} - 2184 q^{11} - 1536 q^{12} - 2764 q^{13} + 16256 q^{14} + 5040 q^{15} - 8192 q^{16}+ \cdots + 124970652 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(\Gamma_1(74))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
74.8.a \(\chi_{74}(1, \cdot)\) 74.8.a.a 4 1
74.8.a.b 4
74.8.a.c 6
74.8.a.d 7
74.8.b \(\chi_{74}(73, \cdot)\) 74.8.b.a 24 1
74.8.c \(\chi_{74}(47, \cdot)\) 74.8.c.a 22 2
74.8.c.b 24
74.8.e \(\chi_{74}(11, \cdot)\) 74.8.e.a 48 2
74.8.f \(\chi_{74}(7, \cdot)\) 74.8.f.a 60 6
74.8.f.b 66
74.8.h \(\chi_{74}(3, \cdot)\) 74.8.h.a 132 6

Decomposition of \(S_{8}^{\mathrm{old}}(\Gamma_1(74))\) into lower level spaces

\( S_{8}^{\mathrm{old}}(\Gamma_1(74)) \cong \) \(S_{8}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(37))\)\(^{\oplus 2}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(\Gamma_1(74))\)\(^{\oplus 1}\)