Properties

Label 7488.2.a.da.1.2
Level $7488$
Weight $2$
Character 7488.1
Self dual yes
Analytic conductor $59.792$
Analytic rank $1$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7488,2,Mod(1,7488)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7488, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7488.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7488 = 2^{6} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7488.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(59.7919810335\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.13448.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 7x^{2} + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 416)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-0.546295\) of defining polynomial
Character \(\chi\) \(=\) 7488.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.70156 q^{5} +4.20732 q^{7} -1.09259 q^{11} -1.00000 q^{13} -0.298438 q^{17} -1.09259 q^{19} +8.70156 q^{25} -2.00000 q^{29} -5.13688 q^{31} -15.5737 q^{35} +3.70156 q^{37} +9.40312 q^{41} +5.29991 q^{43} -4.20732 q^{47} +10.7016 q^{49} +1.40312 q^{53} +4.04429 q^{55} -13.5515 q^{59} -9.40312 q^{61} +3.70156 q^{65} +11.3663 q^{67} -8.25161 q^{71} -6.00000 q^{73} -4.59688 q^{77} -14.6441 q^{79} +7.32206 q^{83} +1.10469 q^{85} +6.00000 q^{89} -4.20732 q^{91} +4.04429 q^{95} +8.80625 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{5} - 4 q^{13} - 14 q^{17} + 22 q^{25} - 8 q^{29} + 2 q^{37} + 12 q^{41} + 30 q^{49} - 20 q^{53} - 12 q^{61} + 2 q^{65} - 24 q^{73} - 44 q^{77} - 34 q^{85} + 24 q^{89} - 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −3.70156 −1.65539 −0.827694 0.561179i \(-0.810348\pi\)
−0.827694 + 0.561179i \(0.810348\pi\)
\(6\) 0 0
\(7\) 4.20732 1.59022 0.795109 0.606466i \(-0.207413\pi\)
0.795109 + 0.606466i \(0.207413\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −1.09259 −0.329428 −0.164714 0.986341i \(-0.552670\pi\)
−0.164714 + 0.986341i \(0.552670\pi\)
\(12\) 0 0
\(13\) −1.00000 −0.277350
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −0.298438 −0.0723818 −0.0361909 0.999345i \(-0.511522\pi\)
−0.0361909 + 0.999345i \(0.511522\pi\)
\(18\) 0 0
\(19\) −1.09259 −0.250657 −0.125329 0.992115i \(-0.539999\pi\)
−0.125329 + 0.992115i \(0.539999\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(24\) 0 0
\(25\) 8.70156 1.74031
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −2.00000 −0.371391 −0.185695 0.982607i \(-0.559454\pi\)
−0.185695 + 0.982607i \(0.559454\pi\)
\(30\) 0 0
\(31\) −5.13688 −0.922610 −0.461305 0.887242i \(-0.652619\pi\)
−0.461305 + 0.887242i \(0.652619\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −15.5737 −2.63243
\(36\) 0 0
\(37\) 3.70156 0.608533 0.304267 0.952587i \(-0.401589\pi\)
0.304267 + 0.952587i \(0.401589\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 9.40312 1.46852 0.734261 0.678868i \(-0.237529\pi\)
0.734261 + 0.678868i \(0.237529\pi\)
\(42\) 0 0
\(43\) 5.29991 0.808229 0.404114 0.914708i \(-0.367580\pi\)
0.404114 + 0.914708i \(0.367580\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −4.20732 −0.613701 −0.306851 0.951758i \(-0.599275\pi\)
−0.306851 + 0.951758i \(0.599275\pi\)
\(48\) 0 0
\(49\) 10.7016 1.52879
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 1.40312 0.192734 0.0963670 0.995346i \(-0.469278\pi\)
0.0963670 + 0.995346i \(0.469278\pi\)
\(54\) 0 0
\(55\) 4.04429 0.545332
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −13.5515 −1.76426 −0.882129 0.471008i \(-0.843890\pi\)
−0.882129 + 0.471008i \(0.843890\pi\)
\(60\) 0 0
\(61\) −9.40312 −1.20395 −0.601973 0.798516i \(-0.705619\pi\)
−0.601973 + 0.798516i \(0.705619\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 3.70156 0.459122
\(66\) 0 0
\(67\) 11.3663 1.38862 0.694310 0.719676i \(-0.255710\pi\)
0.694310 + 0.719676i \(0.255710\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −8.25161 −0.979286 −0.489643 0.871923i \(-0.662873\pi\)
−0.489643 + 0.871923i \(0.662873\pi\)
\(72\) 0 0
\(73\) −6.00000 −0.702247 −0.351123 0.936329i \(-0.614200\pi\)
−0.351123 + 0.936329i \(0.614200\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −4.59688 −0.523863
\(78\) 0 0
\(79\) −14.6441 −1.64759 −0.823796 0.566887i \(-0.808148\pi\)
−0.823796 + 0.566887i \(0.808148\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 7.32206 0.803700 0.401850 0.915706i \(-0.368367\pi\)
0.401850 + 0.915706i \(0.368367\pi\)
\(84\) 0 0
\(85\) 1.10469 0.119820
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 6.00000 0.635999 0.317999 0.948091i \(-0.396989\pi\)
0.317999 + 0.948091i \(0.396989\pi\)
\(90\) 0 0
\(91\) −4.20732 −0.441047
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 4.04429 0.414935
\(96\) 0 0
\(97\) 8.80625 0.894139 0.447070 0.894499i \(-0.352468\pi\)
0.447070 + 0.894499i \(0.352468\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −5.40312 −0.537631 −0.268815 0.963192i \(-0.586632\pi\)
−0.268815 + 0.963192i \(0.586632\pi\)
\(102\) 0 0
\(103\) 12.4589 1.22762 0.613808 0.789456i \(-0.289637\pi\)
0.613808 + 0.789456i \(0.289637\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 14.6441 1.41570 0.707850 0.706363i \(-0.249665\pi\)
0.707850 + 0.706363i \(0.249665\pi\)
\(108\) 0 0
\(109\) −4.29844 −0.411716 −0.205858 0.978582i \(-0.565998\pi\)
−0.205858 + 0.978582i \(0.565998\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −10.0000 −0.940721 −0.470360 0.882474i \(-0.655876\pi\)
−0.470360 + 0.882474i \(0.655876\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −1.25562 −0.115103
\(120\) 0 0
\(121\) −9.80625 −0.891477
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −13.7016 −1.22550
\(126\) 0 0
\(127\) −16.8293 −1.49336 −0.746679 0.665185i \(-0.768353\pi\)
−0.746679 + 0.665185i \(0.768353\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −7.48509 −0.653975 −0.326988 0.945029i \(-0.606034\pi\)
−0.326988 + 0.945029i \(0.606034\pi\)
\(132\) 0 0
\(133\) −4.59688 −0.398600
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −20.2094 −1.72660 −0.863302 0.504688i \(-0.831607\pi\)
−0.863302 + 0.504688i \(0.831607\pi\)
\(138\) 0 0
\(139\) 15.5737 1.32094 0.660471 0.750852i \(-0.270357\pi\)
0.660471 + 0.750852i \(0.270357\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 1.09259 0.0913669
\(144\) 0 0
\(145\) 7.40312 0.614796
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 12.8062 1.04913 0.524564 0.851371i \(-0.324228\pi\)
0.524564 + 0.851371i \(0.324228\pi\)
\(150\) 0 0
\(151\) −2.02214 −0.164560 −0.0822799 0.996609i \(-0.526220\pi\)
−0.0822799 + 0.996609i \(0.526220\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 19.0145 1.52728
\(156\) 0 0
\(157\) 2.00000 0.159617 0.0798087 0.996810i \(-0.474569\pi\)
0.0798087 + 0.996810i \(0.474569\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −9.50723 −0.744664 −0.372332 0.928100i \(-0.621442\pi\)
−0.372332 + 0.928100i \(0.621442\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 11.6924 0.904786 0.452393 0.891819i \(-0.350570\pi\)
0.452393 + 0.891819i \(0.350570\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 9.40312 0.714906 0.357453 0.933931i \(-0.383645\pi\)
0.357453 + 0.933931i \(0.383645\pi\)
\(174\) 0 0
\(175\) 36.6103 2.76748
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −5.29991 −0.396134 −0.198067 0.980188i \(-0.563466\pi\)
−0.198067 + 0.980188i \(0.563466\pi\)
\(180\) 0 0
\(181\) −2.59688 −0.193024 −0.0965121 0.995332i \(-0.530769\pi\)
−0.0965121 + 0.995332i \(0.530769\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −13.7016 −1.00736
\(186\) 0 0
\(187\) 0.326070 0.0238446
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −4.04429 −0.292634 −0.146317 0.989238i \(-0.546742\pi\)
−0.146317 + 0.989238i \(0.546742\pi\)
\(192\) 0 0
\(193\) 21.4031 1.54063 0.770315 0.637663i \(-0.220099\pi\)
0.770315 + 0.637663i \(0.220099\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −16.2984 −1.16122 −0.580608 0.814183i \(-0.697185\pi\)
−0.580608 + 0.814183i \(0.697185\pi\)
\(198\) 0 0
\(199\) −18.6884 −1.32479 −0.662393 0.749157i \(-0.730459\pi\)
−0.662393 + 0.749157i \(0.730459\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −8.41464 −0.590592
\(204\) 0 0
\(205\) −34.8062 −2.43097
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 1.19375 0.0825735
\(210\) 0 0
\(211\) −21.8031 −1.50099 −0.750495 0.660876i \(-0.770185\pi\)
−0.750495 + 0.660876i \(0.770185\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −19.6180 −1.33793
\(216\) 0 0
\(217\) −21.6125 −1.46715
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0.298438 0.0200751
\(222\) 0 0
\(223\) 20.7105 1.38688 0.693440 0.720514i \(-0.256094\pi\)
0.693440 + 0.720514i \(0.256094\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −5.13688 −0.340946 −0.170473 0.985362i \(-0.554530\pi\)
−0.170473 + 0.985362i \(0.554530\pi\)
\(228\) 0 0
\(229\) −8.89531 −0.587819 −0.293909 0.955833i \(-0.594956\pi\)
−0.293909 + 0.955833i \(0.594956\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −23.1047 −1.51364 −0.756819 0.653624i \(-0.773248\pi\)
−0.756819 + 0.653624i \(0.773248\pi\)
\(234\) 0 0
\(235\) 15.5737 1.01591
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −14.4811 −0.936703 −0.468351 0.883542i \(-0.655152\pi\)
−0.468351 + 0.883542i \(0.655152\pi\)
\(240\) 0 0
\(241\) −4.80625 −0.309598 −0.154799 0.987946i \(-0.549473\pi\)
−0.154799 + 0.987946i \(0.549473\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −39.6125 −2.53075
\(246\) 0 0
\(247\) 1.09259 0.0695198
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 16.8293 1.06226 0.531128 0.847292i \(-0.321768\pi\)
0.531128 + 0.847292i \(0.321768\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 14.5078 0.904972 0.452486 0.891771i \(-0.350537\pi\)
0.452486 + 0.891771i \(0.350537\pi\)
\(258\) 0 0
\(259\) 15.5737 0.967700
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 2.18518 0.134744 0.0673719 0.997728i \(-0.478539\pi\)
0.0673719 + 0.997728i \(0.478539\pi\)
\(264\) 0 0
\(265\) −5.19375 −0.319050
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −12.2094 −0.744419 −0.372209 0.928149i \(-0.621400\pi\)
−0.372209 + 0.928149i \(0.621400\pi\)
\(270\) 0 0
\(271\) 4.20732 0.255577 0.127788 0.991801i \(-0.459212\pi\)
0.127788 + 0.991801i \(0.459212\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −9.50723 −0.573308
\(276\) 0 0
\(277\) −24.2094 −1.45460 −0.727300 0.686320i \(-0.759225\pi\)
−0.727300 + 0.686320i \(0.759225\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −10.0000 −0.596550 −0.298275 0.954480i \(-0.596411\pi\)
−0.298275 + 0.954480i \(0.596411\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 39.5620 2.33527
\(288\) 0 0
\(289\) −16.9109 −0.994761
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 19.1047 1.11611 0.558054 0.829805i \(-0.311548\pi\)
0.558054 + 0.829805i \(0.311548\pi\)
\(294\) 0 0
\(295\) 50.1618 2.92053
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 22.2984 1.28526
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 34.8062 1.99300
\(306\) 0 0
\(307\) −15.7367 −0.898141 −0.449070 0.893496i \(-0.648245\pi\)
−0.449070 + 0.893496i \(0.648245\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 18.6884 1.05972 0.529861 0.848085i \(-0.322244\pi\)
0.529861 + 0.848085i \(0.322244\pi\)
\(312\) 0 0
\(313\) 2.50781 0.141750 0.0708749 0.997485i \(-0.477421\pi\)
0.0708749 + 0.997485i \(0.477421\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −24.8062 −1.39326 −0.696629 0.717432i \(-0.745318\pi\)
−0.696629 + 0.717432i \(0.745318\pi\)
\(318\) 0 0
\(319\) 2.18518 0.122347
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0.326070 0.0181430
\(324\) 0 0
\(325\) −8.70156 −0.482676
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −17.7016 −0.975919
\(330\) 0 0
\(331\) −24.1513 −1.32748 −0.663739 0.747964i \(-0.731031\pi\)
−0.663739 + 0.747964i \(0.731031\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −42.0732 −2.29871
\(336\) 0 0
\(337\) −3.10469 −0.169123 −0.0845615 0.996418i \(-0.526949\pi\)
−0.0845615 + 0.996418i \(0.526949\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 5.61250 0.303934
\(342\) 0 0
\(343\) 15.5737 0.840899
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 4.97384 0.267010 0.133505 0.991048i \(-0.457377\pi\)
0.133505 + 0.991048i \(0.457377\pi\)
\(348\) 0 0
\(349\) −33.9109 −1.81521 −0.907605 0.419824i \(-0.862092\pi\)
−0.907605 + 0.419824i \(0.862092\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −14.5969 −0.776913 −0.388457 0.921467i \(-0.626992\pi\)
−0.388457 + 0.921467i \(0.626992\pi\)
\(354\) 0 0
\(355\) 30.5438 1.62110
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 2.95170 0.155785 0.0778923 0.996962i \(-0.475181\pi\)
0.0778923 + 0.996962i \(0.475181\pi\)
\(360\) 0 0
\(361\) −17.8062 −0.937171
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 22.2094 1.16249
\(366\) 0 0
\(367\) −28.9622 −1.51181 −0.755906 0.654680i \(-0.772803\pi\)
−0.755906 + 0.654680i \(0.772803\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 5.90340 0.306489
\(372\) 0 0
\(373\) −16.2094 −0.839290 −0.419645 0.907688i \(-0.637845\pi\)
−0.419645 + 0.907688i \(0.637845\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 2.00000 0.103005
\(378\) 0 0
\(379\) −27.8696 −1.43156 −0.715782 0.698324i \(-0.753929\pi\)
−0.715782 + 0.698324i \(0.753929\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 8.57768 0.438299 0.219149 0.975691i \(-0.429672\pi\)
0.219149 + 0.975691i \(0.429672\pi\)
\(384\) 0 0
\(385\) 17.0156 0.867196
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −32.8062 −1.66334 −0.831671 0.555268i \(-0.812616\pi\)
−0.831671 + 0.555268i \(0.812616\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 54.2061 2.72740
\(396\) 0 0
\(397\) 2.00000 0.100377 0.0501886 0.998740i \(-0.484018\pi\)
0.0501886 + 0.998740i \(0.484018\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 24.2094 1.20896 0.604479 0.796621i \(-0.293381\pi\)
0.604479 + 0.796621i \(0.293381\pi\)
\(402\) 0 0
\(403\) 5.13688 0.255886
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −4.04429 −0.200468
\(408\) 0 0
\(409\) −9.40312 −0.464955 −0.232477 0.972602i \(-0.574683\pi\)
−0.232477 + 0.972602i \(0.574683\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −57.0156 −2.80556
\(414\) 0 0
\(415\) −27.1030 −1.33044
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 32.4030 1.58299 0.791494 0.611177i \(-0.209304\pi\)
0.791494 + 0.611177i \(0.209304\pi\)
\(420\) 0 0
\(421\) −19.1047 −0.931105 −0.465553 0.885020i \(-0.654144\pi\)
−0.465553 + 0.885020i \(0.654144\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −2.59688 −0.125967
\(426\) 0 0
\(427\) −39.5620 −1.91454
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −18.8514 −0.908042 −0.454021 0.890991i \(-0.650011\pi\)
−0.454021 + 0.890991i \(0.650011\pi\)
\(432\) 0 0
\(433\) 4.89531 0.235254 0.117627 0.993058i \(-0.462471\pi\)
0.117627 + 0.993058i \(0.462471\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) −27.4291 −1.30912 −0.654560 0.756010i \(-0.727146\pi\)
−0.654560 + 0.756010i \(0.727146\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 11.8554 0.563269 0.281635 0.959522i \(-0.409123\pi\)
0.281635 + 0.959522i \(0.409123\pi\)
\(444\) 0 0
\(445\) −22.2094 −1.05283
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −24.8062 −1.17068 −0.585340 0.810788i \(-0.699039\pi\)
−0.585340 + 0.810788i \(0.699039\pi\)
\(450\) 0 0
\(451\) −10.2738 −0.483772
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 15.5737 0.730105
\(456\) 0 0
\(457\) 0.806248 0.0377147 0.0188574 0.999822i \(-0.493997\pi\)
0.0188574 + 0.999822i \(0.493997\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −11.7016 −0.544996 −0.272498 0.962156i \(-0.587850\pi\)
−0.272498 + 0.962156i \(0.587850\pi\)
\(462\) 0 0
\(463\) −32.2399 −1.49832 −0.749158 0.662391i \(-0.769542\pi\)
−0.749158 + 0.662391i \(0.769542\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −29.2882 −1.35530 −0.677649 0.735386i \(-0.737001\pi\)
−0.677649 + 0.735386i \(0.737001\pi\)
\(468\) 0 0
\(469\) 47.8219 2.20821
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −5.79063 −0.266253
\(474\) 0 0
\(475\) −9.50723 −0.436222
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 25.0809 1.14598 0.572988 0.819564i \(-0.305784\pi\)
0.572988 + 0.819564i \(0.305784\pi\)
\(480\) 0 0
\(481\) −3.70156 −0.168777
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −32.5969 −1.48015
\(486\) 0 0
\(487\) 2.95170 0.133754 0.0668771 0.997761i \(-0.478696\pi\)
0.0668771 + 0.997761i \(0.478696\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −34.5881 −1.56094 −0.780470 0.625193i \(-0.785020\pi\)
−0.780470 + 0.625193i \(0.785020\pi\)
\(492\) 0 0
\(493\) 0.596876 0.0268819
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −34.7172 −1.55728
\(498\) 0 0
\(499\) 38.7955 1.73672 0.868362 0.495932i \(-0.165173\pi\)
0.868362 + 0.495932i \(0.165173\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 8.41464 0.375190 0.187595 0.982246i \(-0.439931\pi\)
0.187595 + 0.982246i \(0.439931\pi\)
\(504\) 0 0
\(505\) 20.0000 0.889988
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 14.0000 0.620539 0.310270 0.950649i \(-0.399581\pi\)
0.310270 + 0.950649i \(0.399581\pi\)
\(510\) 0 0
\(511\) −25.2439 −1.11673
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −46.1175 −2.03218
\(516\) 0 0
\(517\) 4.59688 0.202170
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −18.5078 −0.810842 −0.405421 0.914130i \(-0.632875\pi\)
−0.405421 + 0.914130i \(0.632875\pi\)
\(522\) 0 0
\(523\) −19.0145 −0.831445 −0.415722 0.909492i \(-0.636471\pi\)
−0.415722 + 0.909492i \(0.636471\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1.53304 0.0667802
\(528\) 0 0
\(529\) −23.0000 −1.00000
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −9.40312 −0.407295
\(534\) 0 0
\(535\) −54.2061 −2.34353
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −11.6924 −0.503628
\(540\) 0 0
\(541\) 8.29844 0.356778 0.178389 0.983960i \(-0.442912\pi\)
0.178389 + 0.983960i \(0.442912\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 15.9109 0.681550
\(546\) 0 0
\(547\) 21.8031 0.932235 0.466117 0.884723i \(-0.345652\pi\)
0.466117 + 0.884723i \(0.345652\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 2.18518 0.0930917
\(552\) 0 0
\(553\) −61.6125 −2.62003
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 7.70156 0.326326 0.163163 0.986599i \(-0.447830\pi\)
0.163163 + 0.986599i \(0.447830\pi\)
\(558\) 0 0
\(559\) −5.29991 −0.224162
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −9.01813 −0.380069 −0.190034 0.981777i \(-0.560860\pi\)
−0.190034 + 0.981777i \(0.560860\pi\)
\(564\) 0 0
\(565\) 37.0156 1.55726
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −35.7016 −1.49669 −0.748344 0.663311i \(-0.769151\pi\)
−0.748344 + 0.663311i \(0.769151\pi\)
\(570\) 0 0
\(571\) −5.29991 −0.221794 −0.110897 0.993832i \(-0.535372\pi\)
−0.110897 + 0.993832i \(0.535372\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −7.19375 −0.299480 −0.149740 0.988725i \(-0.547844\pi\)
−0.149740 + 0.988725i \(0.547844\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 30.8062 1.27806
\(582\) 0 0
\(583\) −1.53304 −0.0634920
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −9.50723 −0.392406 −0.196203 0.980563i \(-0.562861\pi\)
−0.196203 + 0.980563i \(0.562861\pi\)
\(588\) 0 0
\(589\) 5.61250 0.231259
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 30.0000 1.23195 0.615976 0.787765i \(-0.288762\pi\)
0.615976 + 0.787765i \(0.288762\pi\)
\(594\) 0 0
\(595\) 4.64777 0.190540
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −33.3325 −1.36193 −0.680965 0.732316i \(-0.738439\pi\)
−0.680965 + 0.732316i \(0.738439\pi\)
\(600\) 0 0
\(601\) 24.2984 0.991154 0.495577 0.868564i \(-0.334957\pi\)
0.495577 + 0.868564i \(0.334957\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 36.2984 1.47574
\(606\) 0 0
\(607\) −12.1329 −0.492458 −0.246229 0.969212i \(-0.579191\pi\)
−0.246229 + 0.969212i \(0.579191\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 4.20732 0.170210
\(612\) 0 0
\(613\) 26.0000 1.05013 0.525065 0.851062i \(-0.324041\pi\)
0.525065 + 0.851062i \(0.324041\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −6.59688 −0.265580 −0.132790 0.991144i \(-0.542394\pi\)
−0.132790 + 0.991144i \(0.542394\pi\)
\(618\) 0 0
\(619\) 36.6103 1.47149 0.735746 0.677258i \(-0.236832\pi\)
0.735746 + 0.677258i \(0.236832\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 25.2439 1.01138
\(624\) 0 0
\(625\) 7.20937 0.288375
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −1.10469 −0.0440467
\(630\) 0 0
\(631\) 1.69607 0.0675196 0.0337598 0.999430i \(-0.489252\pi\)
0.0337598 + 0.999430i \(0.489252\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 62.2947 2.47209
\(636\) 0 0
\(637\) −10.7016 −0.424011
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −32.8062 −1.29577 −0.647884 0.761739i \(-0.724346\pi\)
−0.647884 + 0.761739i \(0.724346\pi\)
\(642\) 0 0
\(643\) 20.1071 0.792945 0.396472 0.918047i \(-0.370234\pi\)
0.396472 + 0.918047i \(0.370234\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 18.6884 0.734717 0.367358 0.930079i \(-0.380262\pi\)
0.367358 + 0.930079i \(0.380262\pi\)
\(648\) 0 0
\(649\) 14.8062 0.581196
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 47.0156 1.83986 0.919932 0.392079i \(-0.128244\pi\)
0.919932 + 0.392079i \(0.128244\pi\)
\(654\) 0 0
\(655\) 27.7065 1.08258
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 19.0145 0.740699 0.370349 0.928893i \(-0.379238\pi\)
0.370349 + 0.928893i \(0.379238\pi\)
\(660\) 0 0
\(661\) −28.8062 −1.12043 −0.560217 0.828346i \(-0.689282\pi\)
−0.560217 + 0.828346i \(0.689282\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 17.0156 0.659837
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 10.2738 0.396614
\(672\) 0 0
\(673\) −29.3141 −1.12997 −0.564987 0.825100i \(-0.691119\pi\)
−0.564987 + 0.825100i \(0.691119\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 17.4031 0.668856 0.334428 0.942421i \(-0.391457\pi\)
0.334428 + 0.942421i \(0.391457\pi\)
\(678\) 0 0
\(679\) 37.0507 1.42188
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −49.0692 −1.87758 −0.938791 0.344488i \(-0.888052\pi\)
−0.938791 + 0.344488i \(0.888052\pi\)
\(684\) 0 0
\(685\) 74.8062 2.85820
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −1.40312 −0.0534548
\(690\) 0 0
\(691\) −28.5217 −1.08502 −0.542508 0.840050i \(-0.682525\pi\)
−0.542508 + 0.840050i \(0.682525\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −57.6469 −2.18667
\(696\) 0 0
\(697\) −2.80625 −0.106294
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 17.4031 0.657307 0.328653 0.944451i \(-0.393405\pi\)
0.328653 + 0.944451i \(0.393405\pi\)
\(702\) 0 0
\(703\) −4.04429 −0.152533
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −22.7327 −0.854951
\(708\) 0 0
\(709\) 3.19375 0.119944 0.0599719 0.998200i \(-0.480899\pi\)
0.0599719 + 0.998200i \(0.480899\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) −4.04429 −0.151248
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 31.1473 1.16160 0.580800 0.814046i \(-0.302740\pi\)
0.580800 + 0.814046i \(0.302740\pi\)
\(720\) 0 0
\(721\) 52.4187 1.95218
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −17.4031 −0.646336
\(726\) 0 0
\(727\) 2.51125 0.0931371 0.0465685 0.998915i \(-0.485171\pi\)
0.0465685 + 0.998915i \(0.485171\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −1.58169 −0.0585011
\(732\) 0 0
\(733\) 37.9109 1.40027 0.700136 0.714009i \(-0.253123\pi\)
0.700136 + 0.714009i \(0.253123\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −12.4187 −0.457450
\(738\) 0 0
\(739\) −17.5958 −0.647272 −0.323636 0.946182i \(-0.604905\pi\)
−0.323636 + 0.946182i \(0.604905\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −2.02214 −0.0741853 −0.0370926 0.999312i \(-0.511810\pi\)
−0.0370926 + 0.999312i \(0.511810\pi\)
\(744\) 0 0
\(745\) −47.4031 −1.73672
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 61.6125 2.25127
\(750\) 0 0
\(751\) 49.8357 1.81853 0.909266 0.416216i \(-0.136644\pi\)
0.909266 + 0.416216i \(0.136644\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 7.48509 0.272410
\(756\) 0 0
\(757\) 12.2094 0.443757 0.221879 0.975074i \(-0.428781\pi\)
0.221879 + 0.975074i \(0.428781\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −23.6125 −0.855952 −0.427976 0.903790i \(-0.640773\pi\)
−0.427976 + 0.903790i \(0.640773\pi\)
\(762\) 0 0
\(763\) −18.0849 −0.654718
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 13.5515 0.489317
\(768\) 0 0
\(769\) 12.2094 0.440281 0.220141 0.975468i \(-0.429348\pi\)
0.220141 + 0.975468i \(0.429348\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 3.10469 0.111668 0.0558339 0.998440i \(-0.482218\pi\)
0.0558339 + 0.998440i \(0.482218\pi\)
\(774\) 0 0
\(775\) −44.6989 −1.60563
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −10.2738 −0.368095
\(780\) 0 0
\(781\) 9.01562 0.322604
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −7.40312 −0.264229
\(786\) 0 0
\(787\) −0.766519 −0.0273235 −0.0136617 0.999907i \(-0.504349\pi\)
−0.0136617 + 0.999907i \(0.504349\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −42.0732 −1.49595
\(792\) 0 0
\(793\) 9.40312 0.333915
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −2.00000 −0.0708436 −0.0354218 0.999372i \(-0.511277\pi\)
−0.0354218 + 0.999372i \(0.511277\pi\)
\(798\) 0 0
\(799\) 1.25562 0.0444208
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 6.55554 0.231340
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 27.1047 0.952950 0.476475 0.879188i \(-0.341914\pi\)
0.476475 + 0.879188i \(0.341914\pi\)
\(810\) 0 0
\(811\) −16.0628 −0.564040 −0.282020 0.959409i \(-0.591004\pi\)
−0.282020 + 0.959409i \(0.591004\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 35.1916 1.23271
\(816\) 0 0
\(817\) −5.79063 −0.202588
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 25.9109 0.904298 0.452149 0.891942i \(-0.350658\pi\)
0.452149 + 0.891942i \(0.350658\pi\)
\(822\) 0 0
\(823\) 31.7995 1.10846 0.554230 0.832364i \(-0.313013\pi\)
0.554230 + 0.832364i \(0.313013\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 11.3663 0.395246 0.197623 0.980278i \(-0.436678\pi\)
0.197623 + 0.980278i \(0.436678\pi\)
\(828\) 0 0
\(829\) −51.6125 −1.79258 −0.896288 0.443472i \(-0.853746\pi\)
−0.896288 + 0.443472i \(0.853746\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −3.19375 −0.110657
\(834\) 0 0
\(835\) −43.2802 −1.49777
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 32.2399 1.11305 0.556523 0.830832i \(-0.312135\pi\)
0.556523 + 0.830832i \(0.312135\pi\)
\(840\) 0 0
\(841\) −25.0000 −0.862069
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −3.70156 −0.127338
\(846\) 0 0
\(847\) −41.2580 −1.41764
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 23.1047 0.791089 0.395545 0.918447i \(-0.370556\pi\)
0.395545 + 0.918447i \(0.370556\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 12.8062 0.437453 0.218727 0.975786i \(-0.429810\pi\)
0.218727 + 0.975786i \(0.429810\pi\)
\(858\) 0 0
\(859\) 14.6441 0.499651 0.249825 0.968291i \(-0.419627\pi\)
0.249825 + 0.968291i \(0.419627\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 27.2661 0.928148 0.464074 0.885796i \(-0.346387\pi\)
0.464074 + 0.885796i \(0.346387\pi\)
\(864\) 0 0
\(865\) −34.8062 −1.18345
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 16.0000 0.542763
\(870\) 0 0
\(871\) −11.3663 −0.385134
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −57.6469 −1.94882
\(876\) 0 0
\(877\) 44.7172 1.50999 0.754996 0.655729i \(-0.227639\pi\)
0.754996 + 0.655729i \(0.227639\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 55.7016 1.87663 0.938317 0.345777i \(-0.112385\pi\)
0.938317 + 0.345777i \(0.112385\pi\)
\(882\) 0 0
\(883\) 40.8176 1.37362 0.686811 0.726836i \(-0.259010\pi\)
0.686811 + 0.726836i \(0.259010\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −19.0145 −0.638443 −0.319222 0.947680i \(-0.603421\pi\)
−0.319222 + 0.947680i \(0.603421\pi\)
\(888\) 0 0
\(889\) −70.8062 −2.37477
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 4.59688 0.153829
\(894\) 0 0
\(895\) 19.6180 0.655756
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 10.2738 0.342649
\(900\) 0 0
\(901\) −0.418745 −0.0139504
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 9.61250 0.319530
\(906\) 0 0
\(907\) 17.7588 0.589673 0.294836 0.955548i \(-0.404735\pi\)
0.294836 + 0.955548i \(0.404735\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 25.2439 0.836369 0.418184 0.908362i \(-0.362667\pi\)
0.418184 + 0.908362i \(0.362667\pi\)
\(912\) 0 0
\(913\) −8.00000 −0.264761
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −31.4922 −1.03996
\(918\) 0 0
\(919\) −14.6441 −0.483065 −0.241532 0.970393i \(-0.577650\pi\)
−0.241532 + 0.970393i \(0.577650\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 8.25161 0.271605
\(924\) 0 0
\(925\) 32.2094 1.05904
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −5.40312 −0.177271 −0.0886354 0.996064i \(-0.528251\pi\)
−0.0886354 + 0.996064i \(0.528251\pi\)
\(930\) 0 0
\(931\) −11.6924 −0.383203
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −1.20697 −0.0394721
\(936\) 0 0
\(937\) 32.8062 1.07173 0.535867 0.844303i \(-0.319985\pi\)
0.535867 + 0.844303i \(0.319985\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 16.8953 0.550771 0.275386 0.961334i \(-0.411194\pi\)
0.275386 + 0.961334i \(0.411194\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 19.4549 0.632200 0.316100 0.948726i \(-0.397627\pi\)
0.316100 + 0.948726i \(0.397627\pi\)
\(948\) 0 0
\(949\) 6.00000 0.194768
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −49.3141 −1.59744 −0.798720 0.601704i \(-0.794489\pi\)
−0.798720 + 0.601704i \(0.794489\pi\)
\(954\) 0 0
\(955\) 14.9702 0.484424
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −85.0273 −2.74568
\(960\) 0 0
\(961\) −4.61250 −0.148790
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −79.2250 −2.55034
\(966\) 0 0
\(967\) 0.163035 0.00524285 0.00262143 0.999997i \(-0.499166\pi\)
0.00262143 + 0.999997i \(0.499166\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −17.4328 −0.559444 −0.279722 0.960081i \(-0.590242\pi\)
−0.279722 + 0.960081i \(0.590242\pi\)
\(972\) 0 0
\(973\) 65.5234 2.10058
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −18.0000 −0.575871 −0.287936 0.957650i \(-0.592969\pi\)
−0.287936 + 0.957650i \(0.592969\pi\)
\(978\) 0 0
\(979\) −6.55554 −0.209516
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 49.9988 1.59471 0.797356 0.603509i \(-0.206231\pi\)
0.797356 + 0.603509i \(0.206231\pi\)
\(984\) 0 0
\(985\) 60.3297 1.92226
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 20.8736 0.663071 0.331536 0.943443i \(-0.392433\pi\)
0.331536 + 0.943443i \(0.392433\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 69.1763 2.19304
\(996\) 0 0
\(997\) −4.80625 −0.152215 −0.0761077 0.997100i \(-0.524249\pi\)
−0.0761077 + 0.997100i \(0.524249\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7488.2.a.da.1.2 4
3.2 odd 2 832.2.a.p.1.1 4
4.3 odd 2 inner 7488.2.a.da.1.1 4
8.3 odd 2 3744.2.a.be.1.3 4
8.5 even 2 3744.2.a.be.1.4 4
12.11 even 2 832.2.a.p.1.4 4
24.5 odd 2 416.2.a.f.1.4 yes 4
24.11 even 2 416.2.a.f.1.1 4
48.5 odd 4 3328.2.b.bb.1665.8 8
48.11 even 4 3328.2.b.bb.1665.2 8
48.29 odd 4 3328.2.b.bb.1665.1 8
48.35 even 4 3328.2.b.bb.1665.7 8
312.77 odd 2 5408.2.a.bj.1.4 4
312.155 even 2 5408.2.a.bj.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
416.2.a.f.1.1 4 24.11 even 2
416.2.a.f.1.4 yes 4 24.5 odd 2
832.2.a.p.1.1 4 3.2 odd 2
832.2.a.p.1.4 4 12.11 even 2
3328.2.b.bb.1665.1 8 48.29 odd 4
3328.2.b.bb.1665.2 8 48.11 even 4
3328.2.b.bb.1665.7 8 48.35 even 4
3328.2.b.bb.1665.8 8 48.5 odd 4
3744.2.a.be.1.3 4 8.3 odd 2
3744.2.a.be.1.4 4 8.5 even 2
5408.2.a.bj.1.1 4 312.155 even 2
5408.2.a.bj.1.4 4 312.77 odd 2
7488.2.a.da.1.1 4 4.3 odd 2 inner
7488.2.a.da.1.2 4 1.1 even 1 trivial