Defining parameters
Level: | \( N \) | \(=\) | \( 7488 = 2^{6} \cdot 3^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 7488.j (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 24 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(2688\) | ||
Trace bound: | \(19\) | ||
Distinguishing \(T_p\): | \(5\), \(19\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(7488, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1392 | 96 | 1296 |
Cusp forms | 1296 | 96 | 1200 |
Eisenstein series | 96 | 0 | 96 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(7488, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
7488.2.j.a | $16$ | $59.792$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+(\beta _{5}+\beta _{11})q^{5}+\beta _{1}q^{7}+(\beta _{8}-\beta _{15})q^{11}+\cdots\) |
7488.2.j.b | $16$ | $59.792$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+(\beta _{5}+\beta _{11})q^{5}+\beta _{1}q^{7}+(\beta _{8}-\beta _{15})q^{11}+\cdots\) |
7488.2.j.c | $32$ | $59.792$ | None | \(0\) | \(0\) | \(0\) | \(0\) | ||
7488.2.j.d | $32$ | $59.792$ | None | \(0\) | \(0\) | \(0\) | \(0\) |
Decomposition of \(S_{2}^{\mathrm{old}}(7488, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(7488, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(24, [\chi])\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(72, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(96, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(192, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(288, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(312, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(576, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(936, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1248, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2496, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(3744, [\chi])\)\(^{\oplus 2}\)