Properties

Label 7488.2.j
Level $7488$
Weight $2$
Character orbit 7488.j
Rep. character $\chi_{7488}(287,\cdot)$
Character field $\Q$
Dimension $96$
Newform subspaces $4$
Sturm bound $2688$
Trace bound $19$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 7488 = 2^{6} \cdot 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7488.j (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 24 \)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(2688\)
Trace bound: \(19\)
Distinguishing \(T_p\): \(5\), \(19\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(7488, [\chi])\).

Total New Old
Modular forms 1392 96 1296
Cusp forms 1296 96 1200
Eisenstein series 96 0 96

Trace form

\( 96 q + O(q^{10}) \) \( 96 q + 96 q^{25} - 96 q^{49} + 192 q^{97} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(7488, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
7488.2.j.a 7488.j 24.f $16$ $59.792$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 7488.2.j.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(\beta _{5}+\beta _{11})q^{5}+\beta _{1}q^{7}+(\beta _{8}-\beta _{15})q^{11}+\cdots\)
7488.2.j.b 7488.j 24.f $16$ $59.792$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 7488.2.j.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(\beta _{5}+\beta _{11})q^{5}+\beta _{1}q^{7}+(\beta _{8}-\beta _{15})q^{11}+\cdots\)
7488.2.j.c 7488.j 24.f $32$ $59.792$ None 7488.2.j.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$
7488.2.j.d 7488.j 24.f $32$ $59.792$ None 7488.2.j.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$

Decomposition of \(S_{2}^{\mathrm{old}}(7488, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(7488, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(24, [\chi])\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(72, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(96, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(192, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(288, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(312, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(576, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(936, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1248, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2496, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(3744, [\chi])\)\(^{\oplus 2}\)