Defining parameters
Level: | \( N \) | \(=\) | \( 750 = 2 \cdot 3 \cdot 5^{3} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 750.h (of order \(10\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 25 \) |
Character field: | \(\Q(\zeta_{10})\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(300\) | ||
Trace bound: | \(11\) | ||
Distinguishing \(T_p\): | \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(750, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 680 | 56 | 624 |
Cusp forms | 520 | 56 | 464 |
Eisenstein series | 160 | 0 | 160 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(750, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
750.2.h.a | $8$ | $5.989$ | \(\Q(\zeta_{20})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\zeta_{20}q^{2}+\zeta_{20}^{7}q^{3}+\zeta_{20}^{2}q^{4}+(-1+\cdots)q^{6}+\cdots\) |
750.2.h.b | $8$ | $5.989$ | \(\Q(\zeta_{20})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\zeta_{20}q^{2}-\zeta_{20}^{7}q^{3}+\zeta_{20}^{2}q^{4}+(1+\cdots)q^{6}+\cdots\) |
750.2.h.c | $8$ | $5.989$ | \(\Q(\zeta_{20})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\zeta_{20}q^{2}-\zeta_{20}^{7}q^{3}+\zeta_{20}^{2}q^{4}+(1+\cdots)q^{6}+\cdots\) |
750.2.h.d | $16$ | $5.989$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{6}q^{2}+\beta _{3}q^{3}+\beta _{8}q^{4}+\beta _{2}q^{6}+\cdots\) |
750.2.h.e | $16$ | $5.989$ | 16.0.\(\cdots\).12 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{11}q^{2}+\beta _{7}q^{3}+\beta _{9}q^{4}+(1+\beta _{1}+\cdots)q^{6}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(750, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(750, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(50, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(75, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(125, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(150, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(250, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(375, [\chi])\)\(^{\oplus 2}\)