Defining parameters
Level: | \( N \) | \(=\) | \( 750 = 2 \cdot 3 \cdot 5^{3} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 750.m (of order \(25\) and degree \(20\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 125 \) |
Character field: | \(\Q(\zeta_{25})\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(300\) | ||
Trace bound: | \(10\) | ||
Distinguishing \(T_p\): | \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(750, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 3080 | 480 | 2600 |
Cusp forms | 2920 | 480 | 2440 |
Eisenstein series | 160 | 0 | 160 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(750, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
750.2.m.a | $100$ | $5.989$ | None | \(0\) | \(0\) | \(-20\) | \(5\) | ||
750.2.m.b | $120$ | $5.989$ | None | \(0\) | \(0\) | \(20\) | \(-5\) | ||
750.2.m.c | $120$ | $5.989$ | None | \(0\) | \(0\) | \(20\) | \(-5\) | ||
750.2.m.d | $140$ | $5.989$ | None | \(0\) | \(0\) | \(-20\) | \(5\) |
Decomposition of \(S_{2}^{\mathrm{old}}(750, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(750, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(125, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(250, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(375, [\chi])\)\(^{\oplus 2}\)