Defining parameters
Level: | \( N \) | \(=\) | \( 756 = 2^{2} \cdot 3^{3} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 756.bk (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 21 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(144\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(756, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 50 | 2 | 48 |
Cusp forms | 14 | 2 | 12 |
Eisenstein series | 36 | 0 | 36 |
The following table gives the dimensions of subspaces with specified projective image type.
\(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
---|---|---|---|---|
Dimension | 2 | 0 | 0 | 0 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(756, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | Image | CM | RM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||||
756.1.bk.a | $2$ | $0.377$ | \(\Q(\sqrt{-3}) \) | $D_{3}$ | \(\Q(\sqrt{-3}) \) | None | \(0\) | \(0\) | \(0\) | \(-1\) | \(q-\zeta_{6}q^{7}+q^{13}-\zeta_{6}^{2}q^{19}-\zeta_{6}q^{25}+\cdots\) |
Decomposition of \(S_{1}^{\mathrm{old}}(756, [\chi])\) into lower level spaces
\( S_{1}^{\mathrm{old}}(756, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(84, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(189, [\chi])\)\(^{\oplus 3}\)