Properties

Label 756.2.cc
Level $756$
Weight $2$
Character orbit 756.cc
Rep. character $\chi_{756}(139,\cdot)$
Character field $\Q(\zeta_{18})$
Dimension $840$
Newform subspaces $1$
Sturm bound $288$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 756 = 2^{2} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 756.cc (of order \(18\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 756 \)
Character field: \(\Q(\zeta_{18})\)
Newform subspaces: \( 1 \)
Sturm bound: \(288\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(756, [\chi])\).

Total New Old
Modular forms 888 888 0
Cusp forms 840 840 0
Eisenstein series 48 48 0

Trace form

\( 840 q - 12 q^{2} - 12 q^{4} - 6 q^{8} - 24 q^{9} - 21 q^{14} - 12 q^{16} - 12 q^{18} - 12 q^{21} - 12 q^{22} - 24 q^{25} - 12 q^{28} + 6 q^{30} + 18 q^{32} - 72 q^{36} - 12 q^{37} - 36 q^{42} - 6 q^{44}+ \cdots + 54 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(756, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
756.2.cc.a 756.cc 756.bc $840$ $6.037$ None 756.2.cc.a \(-12\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{18}]$