Properties

Label 756.2.i
Level 756756
Weight 22
Character orbit 756.i
Rep. character χ756(37,)\chi_{756}(37,\cdot)
Character field Q(ζ3)\Q(\zeta_{3})
Dimension 1616
Newform subspaces 22
Sturm bound 288288
Trace bound 11

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 756=22337 756 = 2^{2} \cdot 3^{3} \cdot 7
Weight: k k == 2 2
Character orbit: [χ][\chi] == 756.i (of order 33 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 63 63
Character field: Q(ζ3)\Q(\zeta_{3})
Newform subspaces: 2 2
Sturm bound: 288288
Trace bound: 11
Distinguishing TpT_p: 55

Dimensions

The following table gives the dimensions of various subspaces of M2(756,[χ])M_{2}(756, [\chi]).

Total New Old
Modular forms 324 16 308
Cusp forms 252 16 236
Eisenstein series 72 0 72

Trace form

16q+4q5+q7+2q11q13+5q17+2q197q238q252q294q31+11q35q37+24q41+2q4312q47+7q49+18q5312q55+q97+O(q100) 16 q + 4 q^{5} + q^{7} + 2 q^{11} - q^{13} + 5 q^{17} + 2 q^{19} - 7 q^{23} - 8 q^{25} - 2 q^{29} - 4 q^{31} + 11 q^{35} - q^{37} + 24 q^{41} + 2 q^{43} - 12 q^{47} + 7 q^{49} + 18 q^{53} - 12 q^{55}+ \cdots - q^{97}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(756,[χ])S_{2}^{\mathrm{new}}(756, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
756.2.i.a 756.i 63.h 22 6.0376.037 Q(3)\Q(\sqrt{-3}) None 252.2.i.a 00 00 22 5-5 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(22ζ6)q5+(2ζ6)q7+4ζ6q11+q+(2-2\zeta_{6})q^{5}+(-2-\zeta_{6})q^{7}+4\zeta_{6}q^{11}+\cdots
756.2.i.b 756.i 63.h 1414 6.0376.037 Q[x]/(x14)\mathbb{Q}[x]/(x^{14} - \cdots) None 252.2.i.b 00 00 22 66 SU(2)[C3]\mathrm{SU}(2)[C_{3}] qβ3q5+(β5+β12)q7+β13q11+q-\beta _{3}q^{5}+(\beta _{5}+\beta _{12})q^{7}+\beta _{13}q^{11}+\cdots

Decomposition of S2old(756,[χ])S_{2}^{\mathrm{old}}(756, [\chi]) into lower level spaces

S2old(756,[χ]) S_{2}^{\mathrm{old}}(756, [\chi]) \simeq S2new(63,[χ])S_{2}^{\mathrm{new}}(63, [\chi])6^{\oplus 6}\oplusS2new(126,[χ])S_{2}^{\mathrm{new}}(126, [\chi])4^{\oplus 4}\oplusS2new(189,[χ])S_{2}^{\mathrm{new}}(189, [\chi])3^{\oplus 3}\oplusS2new(252,[χ])S_{2}^{\mathrm{new}}(252, [\chi])2^{\oplus 2}\oplusS2new(378,[χ])S_{2}^{\mathrm{new}}(378, [\chi])2^{\oplus 2}