Properties

Label 7569.2.a.bl.1.9
Level 75697569
Weight 22
Character 7569.1
Self dual yes
Analytic conductor 60.43960.439
Analytic rank 00
Dimension 99
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7569,2,Mod(1,7569)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7569, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7569.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 7569=32292 7569 = 3^{2} \cdot 29^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 7569.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 60.438769289960.4387692899
Analytic rank: 00
Dimension: 99
Coefficient field: Q[x]/(x9)\mathbb{Q}[x]/(x^{9} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x9x814x7+9x6+70x523x4141x3+14x2+84x7 x^{9} - x^{8} - 14x^{7} + 9x^{6} + 70x^{5} - 23x^{4} - 141x^{3} + 14x^{2} + 84x - 7 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 87)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.9
Root 2.680962.68096 of defining polynomial
Character χ\chi == 7569.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+2.68096q2+5.18756q43.11062q52.37023q7+8.54571q88.33945q102.60272q112.30853q136.35450q14+12.5356q16+4.83107q17+1.63818q1916.1365q206.97779q22+1.18327q23+4.67594q256.18908q2612.2957q28+5.78321q31+16.5161q32+12.9519q34+7.37288q35+6.89817q37+4.39190q3826.5824q40+7.66791q41+1.88741q4313.5017q44+3.17231q46+9.30167q471.38200q49+12.5360q5011.9756q52+5.17313q53+8.09606q5520.2553q56+4.90494q5911.5358q61+15.5046q62+19.2078q64+7.18096q656.97413q67+25.0615q68+19.7664q703.73571q71+2.39344q73+18.4937q74+8.49816q76+6.16905q77+3.75941q7938.9935q80+20.5574q82+10.5949q8315.0276q85+5.06009q8622.2421q88+5.70261q89+5.47175q91+6.13830q92+24.9374q945.09576q95+16.7931q973.70510q98+O(q100)q+2.68096 q^{2} +5.18756 q^{4} -3.11062 q^{5} -2.37023 q^{7} +8.54571 q^{8} -8.33945 q^{10} -2.60272 q^{11} -2.30853 q^{13} -6.35450 q^{14} +12.5356 q^{16} +4.83107 q^{17} +1.63818 q^{19} -16.1365 q^{20} -6.97779 q^{22} +1.18327 q^{23} +4.67594 q^{25} -6.18908 q^{26} -12.2957 q^{28} +5.78321 q^{31} +16.5161 q^{32} +12.9519 q^{34} +7.37288 q^{35} +6.89817 q^{37} +4.39190 q^{38} -26.5824 q^{40} +7.66791 q^{41} +1.88741 q^{43} -13.5017 q^{44} +3.17231 q^{46} +9.30167 q^{47} -1.38200 q^{49} +12.5360 q^{50} -11.9756 q^{52} +5.17313 q^{53} +8.09606 q^{55} -20.2553 q^{56} +4.90494 q^{59} -11.5358 q^{61} +15.5046 q^{62} +19.2078 q^{64} +7.18096 q^{65} -6.97413 q^{67} +25.0615 q^{68} +19.7664 q^{70} -3.73571 q^{71} +2.39344 q^{73} +18.4937 q^{74} +8.49816 q^{76} +6.16905 q^{77} +3.75941 q^{79} -38.9935 q^{80} +20.5574 q^{82} +10.5949 q^{83} -15.0276 q^{85} +5.06009 q^{86} -22.2421 q^{88} +5.70261 q^{89} +5.47175 q^{91} +6.13830 q^{92} +24.9374 q^{94} -5.09576 q^{95} +16.7931 q^{97} -3.70510 q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 9q+q2+11q4+5q7+12q84q10+3q11+5q13+15q145q16+16q17+q198q20+24q22+10q23+9q25+12q2624q28+4q31+12q98+O(q100) 9 q + q^{2} + 11 q^{4} + 5 q^{7} + 12 q^{8} - 4 q^{10} + 3 q^{11} + 5 q^{13} + 15 q^{14} - 5 q^{16} + 16 q^{17} + q^{19} - 8 q^{20} + 24 q^{22} + 10 q^{23} + 9 q^{25} + 12 q^{26} - 24 q^{28} + 4 q^{31}+ \cdots - 12 q^{98}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 2.68096 1.89573 0.947863 0.318678i 0.103239π-0.103239\pi
0.947863 + 0.318678i 0.103239π0.103239\pi
33 0 0
44 5.18756 2.59378
55 −3.11062 −1.39111 −0.695555 0.718473i 0.744842π-0.744842\pi
−0.695555 + 0.718473i 0.744842π0.744842\pi
66 0 0
77 −2.37023 −0.895863 −0.447932 0.894068i 0.647839π-0.647839\pi
−0.447932 + 0.894068i 0.647839π0.647839\pi
88 8.54571 3.02137
99 0 0
1010 −8.33945 −2.63716
1111 −2.60272 −0.784749 −0.392375 0.919805i 0.628346π-0.628346\pi
−0.392375 + 0.919805i 0.628346π0.628346\pi
1212 0 0
1313 −2.30853 −0.640271 −0.320136 0.947372i 0.603729π-0.603729\pi
−0.320136 + 0.947372i 0.603729π0.603729\pi
1414 −6.35450 −1.69831
1515 0 0
1616 12.5356 3.13391
1717 4.83107 1.17171 0.585854 0.810417i 0.300759π-0.300759\pi
0.585854 + 0.810417i 0.300759π0.300759\pi
1818 0 0
1919 1.63818 0.375825 0.187912 0.982186i 0.439828π-0.439828\pi
0.187912 + 0.982186i 0.439828π0.439828\pi
2020 −16.1365 −3.60823
2121 0 0
2222 −6.97779 −1.48767
2323 1.18327 0.246730 0.123365 0.992361i 0.460631π-0.460631\pi
0.123365 + 0.992361i 0.460631π0.460631\pi
2424 0 0
2525 4.67594 0.935188
2626 −6.18908 −1.21378
2727 0 0
2828 −12.2957 −2.32367
2929 0 0
3030 0 0
3131 5.78321 1.03869 0.519347 0.854563i 0.326175π-0.326175\pi
0.519347 + 0.854563i 0.326175π0.326175\pi
3232 16.5161 2.91966
3333 0 0
3434 12.9519 2.22124
3535 7.37288 1.24624
3636 0 0
3737 6.89817 1.13405 0.567026 0.823700i 0.308094π-0.308094\pi
0.567026 + 0.823700i 0.308094π0.308094\pi
3838 4.39190 0.712461
3939 0 0
4040 −26.5824 −4.20305
4141 7.66791 1.19753 0.598763 0.800926i 0.295659π-0.295659\pi
0.598763 + 0.800926i 0.295659π0.295659\pi
4242 0 0
4343 1.88741 0.287828 0.143914 0.989590i 0.454031π-0.454031\pi
0.143914 + 0.989590i 0.454031π0.454031\pi
4444 −13.5017 −2.03547
4545 0 0
4646 3.17231 0.467732
4747 9.30167 1.35679 0.678394 0.734698i 0.262676π-0.262676\pi
0.678394 + 0.734698i 0.262676π0.262676\pi
4848 0 0
4949 −1.38200 −0.197429
5050 12.5360 1.77286
5151 0 0
5252 −11.9756 −1.66072
5353 5.17313 0.710584 0.355292 0.934755i 0.384381π-0.384381\pi
0.355292 + 0.934755i 0.384381π0.384381\pi
5454 0 0
5555 8.09606 1.09167
5656 −20.2553 −2.70673
5757 0 0
5858 0 0
5959 4.90494 0.638569 0.319285 0.947659i 0.396557π-0.396557\pi
0.319285 + 0.947659i 0.396557π0.396557\pi
6060 0 0
6161 −11.5358 −1.47701 −0.738507 0.674246i 0.764469π-0.764469\pi
−0.738507 + 0.674246i 0.764469π0.764469\pi
6262 15.5046 1.96908
6363 0 0
6464 19.2078 2.40097
6565 7.18096 0.890688
6666 0 0
6767 −6.97413 −0.852026 −0.426013 0.904717i 0.640082π-0.640082\pi
−0.426013 + 0.904717i 0.640082π0.640082\pi
6868 25.0615 3.03915
6969 0 0
7070 19.7664 2.36254
7171 −3.73571 −0.443347 −0.221674 0.975121i 0.571152π-0.571152\pi
−0.221674 + 0.975121i 0.571152π0.571152\pi
7272 0 0
7373 2.39344 0.280132 0.140066 0.990142i 0.455269π-0.455269\pi
0.140066 + 0.990142i 0.455269π0.455269\pi
7474 18.4937 2.14985
7575 0 0
7676 8.49816 0.974806
7777 6.16905 0.703028
7878 0 0
7979 3.75941 0.422967 0.211483 0.977382i 0.432171π-0.432171\pi
0.211483 + 0.977382i 0.432171π0.432171\pi
8080 −38.9935 −4.35961
8181 0 0
8282 20.5574 2.27018
8383 10.5949 1.16294 0.581472 0.813566i 0.302477π-0.302477\pi
0.581472 + 0.813566i 0.302477π0.302477\pi
8484 0 0
8585 −15.0276 −1.62997
8686 5.06009 0.545643
8787 0 0
8888 −22.2421 −2.37101
8989 5.70261 0.604475 0.302238 0.953233i 0.402266π-0.402266\pi
0.302238 + 0.953233i 0.402266π0.402266\pi
9090 0 0
9191 5.47175 0.573596
9292 6.13830 0.639962
9393 0 0
9494 24.9374 2.57210
9595 −5.09576 −0.522814
9696 0 0
9797 16.7931 1.70508 0.852539 0.522663i 0.175061π-0.175061\pi
0.852539 + 0.522663i 0.175061π0.175061\pi
9898 −3.70510 −0.374271
9999 0 0
100100 24.2567 2.42567
101101 −4.58223 −0.455949 −0.227974 0.973667i 0.573210π-0.573210\pi
−0.227974 + 0.973667i 0.573210π0.573210\pi
102102 0 0
103103 10.5312 1.03767 0.518834 0.854875i 0.326366π-0.326366\pi
0.518834 + 0.854875i 0.326366π0.326366\pi
104104 −19.7281 −1.93449
105105 0 0
106106 13.8690 1.34707
107107 −13.7534 −1.32959 −0.664794 0.747026i 0.731481π-0.731481\pi
−0.664794 + 0.747026i 0.731481π0.731481\pi
108108 0 0
109109 −5.35230 −0.512657 −0.256329 0.966590i 0.582513π-0.582513\pi
−0.256329 + 0.966590i 0.582513π0.582513\pi
110110 21.7052 2.06951
111111 0 0
112112 −29.7123 −2.80755
113113 10.7979 1.01578 0.507892 0.861421i 0.330425π-0.330425\pi
0.507892 + 0.861421i 0.330425π0.330425\pi
114114 0 0
115115 −3.68071 −0.343228
116116 0 0
117117 0 0
118118 13.1500 1.21055
119119 −11.4508 −1.04969
120120 0 0
121121 −4.22585 −0.384169
122122 −30.9272 −2.80001
123123 0 0
124124 30.0007 2.69414
125125 1.00803 0.0901609
126126 0 0
127127 16.8611 1.49618 0.748088 0.663599i 0.230972π-0.230972\pi
0.748088 + 0.663599i 0.230972π0.230972\pi
128128 18.4631 1.63192
129129 0 0
130130 19.2519 1.68850
131131 −4.55312 −0.397808 −0.198904 0.980019i 0.563738π-0.563738\pi
−0.198904 + 0.980019i 0.563738π0.563738\pi
132132 0 0
133133 −3.88287 −0.336688
134134 −18.6974 −1.61521
135135 0 0
136136 41.2850 3.54016
137137 22.0092 1.88038 0.940188 0.340657i 0.110650π-0.110650\pi
0.940188 + 0.340657i 0.110650π0.110650\pi
138138 0 0
139139 −8.09367 −0.686496 −0.343248 0.939245i 0.611527π-0.611527\pi
−0.343248 + 0.939245i 0.611527π0.611527\pi
140140 38.2472 3.23248
141141 0 0
142142 −10.0153 −0.840465
143143 6.00846 0.502453
144144 0 0
145145 0 0
146146 6.41673 0.531053
147147 0 0
148148 35.7846 2.94148
149149 −0.743685 −0.0609251 −0.0304625 0.999536i 0.509698π-0.509698\pi
−0.0304625 + 0.999536i 0.509698π0.509698\pi
150150 0 0
151151 −17.2880 −1.40688 −0.703440 0.710755i 0.748354π-0.748354\pi
−0.703440 + 0.710755i 0.748354π0.748354\pi
152152 13.9994 1.13550
153153 0 0
154154 16.5390 1.33275
155155 −17.9893 −1.44494
156156 0 0
157157 −0.399286 −0.0318665 −0.0159332 0.999873i 0.505072π-0.505072\pi
−0.0159332 + 0.999873i 0.505072π0.505072\pi
158158 10.0788 0.801829
159159 0 0
160160 −51.3752 −4.06157
161161 −2.80463 −0.221036
162162 0 0
163163 9.91343 0.776479 0.388240 0.921558i 0.373083π-0.373083\pi
0.388240 + 0.921558i 0.373083π0.373083\pi
164164 39.7777 3.10612
165165 0 0
166166 28.4046 2.20462
167167 11.7190 0.906842 0.453421 0.891297i 0.350203π-0.350203\pi
0.453421 + 0.891297i 0.350203π0.350203\pi
168168 0 0
169169 −7.67068 −0.590052
170170 −40.2885 −3.08999
171171 0 0
172172 9.79107 0.746562
173173 −8.14339 −0.619131 −0.309565 0.950878i 0.600184π-0.600184\pi
−0.309565 + 0.950878i 0.600184π0.600184\pi
174174 0 0
175175 −11.0831 −0.837800
176176 −32.6267 −2.45933
177177 0 0
178178 15.2885 1.14592
179179 −10.7785 −0.805625 −0.402812 0.915283i 0.631967π-0.631967\pi
−0.402812 + 0.915283i 0.631967π0.631967\pi
180180 0 0
181181 20.6125 1.53211 0.766057 0.642773i 0.222216π-0.222216\pi
0.766057 + 0.642773i 0.222216π0.222216\pi
182182 14.6696 1.08738
183183 0 0
184184 10.1119 0.745461
185185 −21.4576 −1.57759
186186 0 0
187187 −12.5739 −0.919497
188188 48.2529 3.51921
189189 0 0
190190 −13.6615 −0.991112
191191 24.4869 1.77181 0.885906 0.463865i 0.153538π-0.153538\pi
0.885906 + 0.463865i 0.153538π0.153538\pi
192192 0 0
193193 −15.8432 −1.14042 −0.570208 0.821501i 0.693137π-0.693137\pi
−0.570208 + 0.821501i 0.693137π0.693137\pi
194194 45.0216 3.23236
195195 0 0
196196 −7.16922 −0.512087
197197 −12.7505 −0.908436 −0.454218 0.890891i 0.650081π-0.650081\pi
−0.454218 + 0.890891i 0.650081π0.650081\pi
198198 0 0
199199 −8.12481 −0.575952 −0.287976 0.957638i 0.592982π-0.592982\pi
−0.287976 + 0.957638i 0.592982π0.592982\pi
200200 39.9592 2.82555
201201 0 0
202202 −12.2848 −0.864354
203203 0 0
204204 0 0
205205 −23.8519 −1.66589
206206 28.2337 1.96713
207207 0 0
208208 −28.9389 −2.00655
209209 −4.26373 −0.294928
210210 0 0
211211 −20.9954 −1.44538 −0.722692 0.691170i 0.757096π-0.757096\pi
−0.722692 + 0.691170i 0.757096π0.757096\pi
212212 26.8359 1.84310
213213 0 0
214214 −36.8723 −2.52054
215215 −5.87102 −0.400401
216216 0 0
217217 −13.7075 −0.930528
218218 −14.3493 −0.971857
219219 0 0
220220 41.9988 2.83156
221221 −11.1527 −0.750211
222222 0 0
223223 21.2070 1.42013 0.710064 0.704137i 0.248666π-0.248666\pi
0.710064 + 0.704137i 0.248666π0.248666\pi
224224 −39.1470 −2.61562
225225 0 0
226226 28.9488 1.92565
227227 −10.7043 −0.710469 −0.355234 0.934777i 0.615599π-0.615599\pi
−0.355234 + 0.934777i 0.615599π0.615599\pi
228228 0 0
229229 −14.0058 −0.925531 −0.462765 0.886481i 0.653143π-0.653143\pi
−0.462765 + 0.886481i 0.653143π0.653143\pi
230230 −9.86785 −0.650667
231231 0 0
232232 0 0
233233 12.3851 0.811377 0.405688 0.914011i 0.367032π-0.367032\pi
0.405688 + 0.914011i 0.367032π0.367032\pi
234234 0 0
235235 −28.9339 −1.88744
236236 25.4447 1.65631
237237 0 0
238238 −30.6991 −1.98992
239239 −8.90340 −0.575913 −0.287956 0.957644i 0.592976π-0.592976\pi
−0.287956 + 0.957644i 0.592976π0.592976\pi
240240 0 0
241241 −26.1498 −1.68446 −0.842228 0.539121i 0.818757π-0.818757\pi
−0.842228 + 0.539121i 0.818757π0.818757\pi
242242 −11.3294 −0.728278
243243 0 0
244244 −59.8429 −3.83105
245245 4.29888 0.274645
246246 0 0
247247 −3.78180 −0.240630
248248 49.4216 3.13828
249249 0 0
250250 2.70249 0.170920
251251 −3.87652 −0.244683 −0.122342 0.992488i 0.539040π-0.539040\pi
−0.122342 + 0.992488i 0.539040π0.539040\pi
252252 0 0
253253 −3.07973 −0.193621
254254 45.2038 2.83634
255255 0 0
256256 11.0833 0.692709
257257 1.61631 0.100823 0.0504114 0.998729i 0.483947π-0.483947\pi
0.0504114 + 0.998729i 0.483947π0.483947\pi
258258 0 0
259259 −16.3503 −1.01596
260260 37.2516 2.31025
261261 0 0
262262 −12.2067 −0.754135
263263 22.6623 1.39741 0.698707 0.715408i 0.253759π-0.253759\pi
0.698707 + 0.715408i 0.253759π0.253759\pi
264264 0 0
265265 −16.0916 −0.988500
266266 −10.4098 −0.638267
267267 0 0
268268 −36.1787 −2.20997
269269 5.22022 0.318283 0.159141 0.987256i 0.449127π-0.449127\pi
0.159141 + 0.987256i 0.449127π0.449127\pi
270270 0 0
271271 1.49938 0.0910808 0.0455404 0.998962i 0.485499π-0.485499\pi
0.0455404 + 0.998962i 0.485499π0.485499\pi
272272 60.5605 3.67202
273273 0 0
274274 59.0059 3.56468
275275 −12.1702 −0.733888
276276 0 0
277277 2.18118 0.131055 0.0655273 0.997851i 0.479127π-0.479127\pi
0.0655273 + 0.997851i 0.479127π0.479127\pi
278278 −21.6988 −1.30141
279279 0 0
280280 63.0066 3.76536
281281 17.2274 1.02770 0.513850 0.857880i 0.328219π-0.328219\pi
0.513850 + 0.857880i 0.328219π0.328219\pi
282282 0 0
283283 −11.4305 −0.679470 −0.339735 0.940521i 0.610337π-0.610337\pi
−0.339735 + 0.940521i 0.610337π0.610337\pi
284284 −19.3792 −1.14994
285285 0 0
286286 16.1084 0.952512
287287 −18.1747 −1.07282
288288 0 0
289289 6.33927 0.372898
290290 0 0
291291 0 0
292292 12.4161 0.726599
293293 5.12453 0.299378 0.149689 0.988733i 0.452173π-0.452173\pi
0.149689 + 0.988733i 0.452173π0.452173\pi
294294 0 0
295295 −15.2574 −0.888320
296296 58.9498 3.42639
297297 0 0
298298 −1.99379 −0.115497
299299 −2.73163 −0.157974
300300 0 0
301301 −4.47361 −0.257855
302302 −46.3486 −2.66706
303303 0 0
304304 20.5356 1.17780
305305 35.8836 2.05469
306306 0 0
307307 3.39033 0.193496 0.0967482 0.995309i 0.469156π-0.469156\pi
0.0967482 + 0.995309i 0.469156π0.469156\pi
308308 32.0023 1.82350
309309 0 0
310310 −48.2287 −2.73921
311311 −17.1182 −0.970687 −0.485343 0.874324i 0.661305π-0.661305\pi
−0.485343 + 0.874324i 0.661305π0.661305\pi
312312 0 0
313313 −1.44818 −0.0818559 −0.0409280 0.999162i 0.513031π-0.513031\pi
−0.0409280 + 0.999162i 0.513031π0.513031\pi
314314 −1.07047 −0.0604101
315315 0 0
316316 19.5022 1.09708
317317 17.5169 0.983849 0.491925 0.870638i 0.336294π-0.336294\pi
0.491925 + 0.870638i 0.336294π0.336294\pi
318318 0 0
319319 0 0
320320 −59.7480 −3.34002
321321 0 0
322322 −7.51912 −0.419024
323323 7.91418 0.440357
324324 0 0
325325 −10.7946 −0.598774
326326 26.5775 1.47199
327327 0 0
328328 65.5278 3.61817
329329 −22.0471 −1.21550
330330 0 0
331331 10.4276 0.573155 0.286577 0.958057i 0.407482π-0.407482\pi
0.286577 + 0.958057i 0.407482π0.407482\pi
332332 54.9618 3.01642
333333 0 0
334334 31.4181 1.71912
335335 21.6939 1.18526
336336 0 0
337337 −32.2012 −1.75411 −0.877056 0.480387i 0.840496π-0.840496\pi
−0.877056 + 0.480387i 0.840496π0.840496\pi
338338 −20.5648 −1.11858
339339 0 0
340340 −77.9566 −4.22779
341341 −15.0521 −0.815115
342342 0 0
343343 19.8673 1.07273
344344 16.1293 0.869634
345345 0 0
346346 −21.8321 −1.17370
347347 −6.96578 −0.373942 −0.186971 0.982365i 0.559867π-0.559867\pi
−0.186971 + 0.982365i 0.559867π0.559867\pi
348348 0 0
349349 13.9714 0.747871 0.373935 0.927455i 0.378008π-0.378008\pi
0.373935 + 0.927455i 0.378008π0.378008\pi
350350 −29.7133 −1.58824
351351 0 0
352352 −42.9867 −2.29120
353353 −25.8422 −1.37544 −0.687722 0.725974i 0.741389π-0.741389\pi
−0.687722 + 0.725974i 0.741389π0.741389\pi
354354 0 0
355355 11.6204 0.616745
356356 29.5826 1.56787
357357 0 0
358358 −28.8968 −1.52724
359359 17.5435 0.925909 0.462955 0.886382i 0.346789π-0.346789\pi
0.462955 + 0.886382i 0.346789π0.346789\pi
360360 0 0
361361 −16.3164 −0.858756
362362 55.2613 2.90447
363363 0 0
364364 28.3850 1.48778
365365 −7.44509 −0.389694
366366 0 0
367367 29.7629 1.55361 0.776805 0.629741i 0.216839π-0.216839\pi
0.776805 + 0.629741i 0.216839π0.216839\pi
368368 14.8331 0.773228
369369 0 0
370370 −57.5269 −2.99068
371371 −12.2615 −0.636586
372372 0 0
373373 19.2955 0.999082 0.499541 0.866290i 0.333502π-0.333502\pi
0.499541 + 0.866290i 0.333502π0.333502\pi
374374 −33.7102 −1.74311
375375 0 0
376376 79.4894 4.09936
377377 0 0
378378 0 0
379379 −8.58926 −0.441200 −0.220600 0.975364i 0.570802π-0.570802\pi
−0.220600 + 0.975364i 0.570802π0.570802\pi
380380 −26.4345 −1.35606
381381 0 0
382382 65.6485 3.35887
383383 28.2918 1.44564 0.722822 0.691034i 0.242845π-0.242845\pi
0.722822 + 0.691034i 0.242845π0.242845\pi
384384 0 0
385385 −19.1895 −0.977990
386386 −42.4749 −2.16191
387387 0 0
388388 87.1150 4.42260
389389 27.1843 1.37830 0.689149 0.724619i 0.257984π-0.257984\pi
0.689149 + 0.724619i 0.257984π0.257984\pi
390390 0 0
391391 5.71649 0.289095
392392 −11.8102 −0.596505
393393 0 0
394394 −34.1836 −1.72215
395395 −11.6941 −0.588394
396396 0 0
397397 4.95624 0.248747 0.124373 0.992235i 0.460308π-0.460308\pi
0.124373 + 0.992235i 0.460308π0.460308\pi
398398 −21.7823 −1.09185
399399 0 0
400400 58.6158 2.93079
401401 −6.21952 −0.310588 −0.155294 0.987868i 0.549632π-0.549632\pi
−0.155294 + 0.987868i 0.549632π0.549632\pi
402402 0 0
403403 −13.3507 −0.665046
404404 −23.7706 −1.18263
405405 0 0
406406 0 0
407407 −17.9540 −0.889946
408408 0 0
409409 4.63871 0.229369 0.114685 0.993402i 0.463414π-0.463414\pi
0.114685 + 0.993402i 0.463414π0.463414\pi
410410 −63.9461 −3.15807
411411 0 0
412412 54.6311 2.69148
413413 −11.6259 −0.572071
414414 0 0
415415 −32.9568 −1.61778
416416 −38.1279 −1.86938
417417 0 0
418418 −11.4309 −0.559103
419419 −13.6679 −0.667722 −0.333861 0.942622i 0.608352π-0.608352\pi
−0.333861 + 0.942622i 0.608352π0.608352\pi
420420 0 0
421421 −11.9030 −0.580118 −0.290059 0.957009i 0.593675π-0.593675\pi
−0.290059 + 0.957009i 0.593675π0.593675\pi
422422 −56.2879 −2.74005
423423 0 0
424424 44.2081 2.14693
425425 22.5898 1.09577
426426 0 0
427427 27.3426 1.32320
428428 −71.3464 −3.44866
429429 0 0
430430 −15.7400 −0.759050
431431 22.7320 1.09496 0.547480 0.836819i 0.315587π-0.315587\pi
0.547480 + 0.836819i 0.315587π0.315587\pi
432432 0 0
433433 −5.51061 −0.264823 −0.132412 0.991195i 0.542272π-0.542272\pi
−0.132412 + 0.991195i 0.542272π0.542272\pi
434434 −36.7494 −1.76403
435435 0 0
436436 −27.7653 −1.32972
437437 1.93842 0.0927271
438438 0 0
439439 20.2638 0.967140 0.483570 0.875306i 0.339340π-0.339340\pi
0.483570 + 0.875306i 0.339340π0.339340\pi
440440 69.1866 3.29834
441441 0 0
442442 −29.8999 −1.42219
443443 −33.8979 −1.61054 −0.805269 0.592910i 0.797979π-0.797979\pi
−0.805269 + 0.592910i 0.797979π0.797979\pi
444444 0 0
445445 −17.7386 −0.840892
446446 56.8553 2.69217
447447 0 0
448448 −45.5269 −2.15094
449449 −32.2546 −1.52219 −0.761095 0.648640i 0.775338π-0.775338\pi
−0.761095 + 0.648640i 0.775338π0.775338\pi
450450 0 0
451451 −19.9574 −0.939758
452452 56.0148 2.63472
453453 0 0
454454 −28.6978 −1.34685
455455 −17.0205 −0.797935
456456 0 0
457457 −26.1317 −1.22239 −0.611194 0.791480i 0.709311π-0.709311\pi
−0.611194 + 0.791480i 0.709311π0.709311\pi
458458 −37.5491 −1.75455
459459 0 0
460460 −19.0939 −0.890258
461461 12.5362 0.583867 0.291933 0.956439i 0.405701π-0.405701\pi
0.291933 + 0.956439i 0.405701π0.405701\pi
462462 0 0
463463 −38.0989 −1.77061 −0.885303 0.465014i 0.846049π-0.846049\pi
−0.885303 + 0.465014i 0.846049π0.846049\pi
464464 0 0
465465 0 0
466466 33.2041 1.53815
467467 6.90918 0.319719 0.159859 0.987140i 0.448896π-0.448896\pi
0.159859 + 0.987140i 0.448896π0.448896\pi
468468 0 0
469469 16.5303 0.763299
470470 −77.5708 −3.57807
471471 0 0
472472 41.9163 1.92935
473473 −4.91241 −0.225873
474474 0 0
475475 7.66004 0.351467
476476 −59.4015 −2.72266
477477 0 0
478478 −23.8697 −1.09177
479479 15.2304 0.695894 0.347947 0.937514i 0.386879π-0.386879\pi
0.347947 + 0.937514i 0.386879π0.386879\pi
480480 0 0
481481 −15.9246 −0.726101
482482 −70.1066 −3.19327
483483 0 0
484484 −21.9219 −0.996448
485485 −52.2368 −2.37195
486486 0 0
487487 −31.6610 −1.43470 −0.717350 0.696713i 0.754645π-0.754645\pi
−0.717350 + 0.696713i 0.754645π0.754645\pi
488488 −98.5821 −4.46260
489489 0 0
490490 11.5251 0.520653
491491 −10.7278 −0.484137 −0.242068 0.970259i 0.577826π-0.577826\pi
−0.242068 + 0.970259i 0.577826π0.577826\pi
492492 0 0
493493 0 0
494494 −10.1388 −0.456168
495495 0 0
496496 72.4961 3.25517
497497 8.85450 0.397179
498498 0 0
499499 −9.76966 −0.437350 −0.218675 0.975798i 0.570173π-0.570173\pi
−0.218675 + 0.975798i 0.570173π0.570173\pi
500500 5.22921 0.233857
501501 0 0
502502 −10.3928 −0.463853
503503 24.2897 1.08302 0.541512 0.840693i 0.317852π-0.317852\pi
0.541512 + 0.840693i 0.317852π0.317852\pi
504504 0 0
505505 14.2536 0.634275
506506 −8.25664 −0.367052
507507 0 0
508508 87.4677 3.88075
509509 4.04253 0.179182 0.0895910 0.995979i 0.471444π-0.471444\pi
0.0895910 + 0.995979i 0.471444π0.471444\pi
510510 0 0
511511 −5.67302 −0.250960
512512 −7.21219 −0.318737
513513 0 0
514514 4.33327 0.191133
515515 −32.7585 −1.44351
516516 0 0
517517 −24.2096 −1.06474
518518 −43.8344 −1.92597
519519 0 0
520520 61.3664 2.69110
521521 20.3240 0.890412 0.445206 0.895428i 0.353130π-0.353130\pi
0.445206 + 0.895428i 0.353130π0.353130\pi
522522 0 0
523523 0.181906 0.00795418 0.00397709 0.999992i 0.498734π-0.498734\pi
0.00397709 + 0.999992i 0.498734π0.498734\pi
524524 −23.6196 −1.03183
525525 0 0
526526 60.7566 2.64911
527527 27.9391 1.21705
528528 0 0
529529 −21.5999 −0.939124
530530 −43.1410 −1.87393
531531 0 0
532532 −20.1426 −0.873293
533533 −17.7016 −0.766742
534534 0 0
535535 42.7815 1.84960
536536 −59.5989 −2.57428
537537 0 0
538538 13.9952 0.603377
539539 3.59696 0.154932
540540 0 0
541541 −26.9847 −1.16016 −0.580082 0.814558i 0.696979π-0.696979\pi
−0.580082 + 0.814558i 0.696979π0.696979\pi
542542 4.01978 0.172664
543543 0 0
544544 79.7905 3.42099
545545 16.6489 0.713162
546546 0 0
547547 8.74053 0.373718 0.186859 0.982387i 0.440169π-0.440169\pi
0.186859 + 0.982387i 0.440169π0.440169\pi
548548 114.174 4.87728
549549 0 0
550550 −32.6277 −1.39125
551551 0 0
552552 0 0
553553 −8.91068 −0.378920
554554 5.84767 0.248444
555555 0 0
556556 −41.9864 −1.78062
557557 28.3288 1.20033 0.600166 0.799876i 0.295101π-0.295101\pi
0.600166 + 0.799876i 0.295101π0.295101\pi
558558 0 0
559559 −4.35716 −0.184288
560560 92.4237 3.90561
561561 0 0
562562 46.1860 1.94824
563563 1.24481 0.0524623 0.0262312 0.999656i 0.491649π-0.491649\pi
0.0262312 + 0.999656i 0.491649π0.491649\pi
564564 0 0
565565 −33.5882 −1.41307
566566 −30.6446 −1.28809
567567 0 0
568568 −31.9243 −1.33951
569569 8.25260 0.345967 0.172983 0.984925i 0.444659π-0.444659\pi
0.172983 + 0.984925i 0.444659π0.444659\pi
570570 0 0
571571 27.8020 1.16348 0.581738 0.813376i 0.302373π-0.302373\pi
0.581738 + 0.813376i 0.302373π0.302373\pi
572572 31.1692 1.30325
573573 0 0
574574 −48.7258 −2.03377
575575 5.53292 0.230739
576576 0 0
577577 7.19670 0.299602 0.149801 0.988716i 0.452137π-0.452137\pi
0.149801 + 0.988716i 0.452137π0.452137\pi
578578 16.9954 0.706913
579579 0 0
580580 0 0
581581 −25.1124 −1.04184
582582 0 0
583583 −13.4642 −0.557630
584584 20.4537 0.846380
585585 0 0
586586 13.7387 0.567539
587587 −8.46040 −0.349198 −0.174599 0.984640i 0.555863π-0.555863\pi
−0.174599 + 0.984640i 0.555863π0.555863\pi
588588 0 0
589589 9.47394 0.390367
590590 −40.9045 −1.68401
591591 0 0
592592 86.4728 3.55401
593593 28.7932 1.18239 0.591197 0.806527i 0.298656π-0.298656\pi
0.591197 + 0.806527i 0.298656π0.298656\pi
594594 0 0
595595 35.6189 1.46023
596596 −3.85791 −0.158026
597597 0 0
598598 −7.32338 −0.299475
599599 2.47991 0.101327 0.0506633 0.998716i 0.483866π-0.483866\pi
0.0506633 + 0.998716i 0.483866π0.483866\pi
600600 0 0
601601 −39.7004 −1.61941 −0.809706 0.586836i 0.800373π-0.800373\pi
−0.809706 + 0.586836i 0.800373π0.800373\pi
602602 −11.9936 −0.488822
603603 0 0
604604 −89.6826 −3.64913
605605 13.1450 0.534421
606606 0 0
607607 35.3535 1.43495 0.717476 0.696583i 0.245297π-0.245297\pi
0.717476 + 0.696583i 0.245297π0.245297\pi
608608 27.0564 1.09728
609609 0 0
610610 96.2026 3.89513
611611 −21.4732 −0.868713
612612 0 0
613613 8.09395 0.326912 0.163456 0.986551i 0.447736π-0.447736\pi
0.163456 + 0.986551i 0.447736π0.447736\pi
614614 9.08935 0.366816
615615 0 0
616616 52.7189 2.12411
617617 −27.3619 −1.10155 −0.550775 0.834654i 0.685668π-0.685668\pi
−0.550775 + 0.834654i 0.685668π0.685668\pi
618618 0 0
619619 27.1831 1.09258 0.546291 0.837596i 0.316039π-0.316039\pi
0.546291 + 0.837596i 0.316039π0.316039\pi
620620 −93.3207 −3.74785
621621 0 0
622622 −45.8934 −1.84016
623623 −13.5165 −0.541527
624624 0 0
625625 −26.5153 −1.06061
626626 −3.88251 −0.155176
627627 0 0
628628 −2.07132 −0.0826545
629629 33.3256 1.32878
630630 0 0
631631 19.6997 0.784231 0.392116 0.919916i 0.371743π-0.371743\pi
0.392116 + 0.919916i 0.371743π0.371743\pi
632632 32.1269 1.27794
633633 0 0
634634 46.9622 1.86511
635635 −52.4483 −2.08135
636636 0 0
637637 3.19040 0.126408
638638 0 0
639639 0 0
640640 −57.4317 −2.27019
641641 −0.280270 −0.0110700 −0.00553501 0.999985i 0.501762π-0.501762\pi
−0.00553501 + 0.999985i 0.501762π0.501762\pi
642642 0 0
643643 −47.1001 −1.85745 −0.928724 0.370773i 0.879093π-0.879093\pi
−0.928724 + 0.370773i 0.879093π0.879093\pi
644644 −14.5492 −0.573319
645645 0 0
646646 21.2176 0.834796
647647 1.09365 0.0429956 0.0214978 0.999769i 0.493157π-0.493157\pi
0.0214978 + 0.999769i 0.493157π0.493157\pi
648648 0 0
649649 −12.7662 −0.501117
650650 −28.9398 −1.13511
651651 0 0
652652 51.4264 2.01402
653653 29.8076 1.16646 0.583230 0.812307i 0.301788π-0.301788\pi
0.583230 + 0.812307i 0.301788π0.301788\pi
654654 0 0
655655 14.1630 0.553395
656656 96.1221 3.75294
657657 0 0
658658 −59.1075 −2.30425
659659 33.3371 1.29863 0.649315 0.760519i 0.275056π-0.275056\pi
0.649315 + 0.760519i 0.275056π0.275056\pi
660660 0 0
661661 2.44877 0.0952462 0.0476231 0.998865i 0.484835π-0.484835\pi
0.0476231 + 0.998865i 0.484835π0.484835\pi
662662 27.9561 1.08654
663663 0 0
664664 90.5412 3.51368
665665 12.0781 0.468370
666666 0 0
667667 0 0
668668 60.7929 2.35215
669669 0 0
670670 58.1604 2.24693
671671 30.0246 1.15909
672672 0 0
673673 11.2261 0.432734 0.216367 0.976312i 0.430579π-0.430579\pi
0.216367 + 0.976312i 0.430579π0.430579\pi
674674 −86.3303 −3.32532
675675 0 0
676676 −39.7921 −1.53046
677677 5.12465 0.196956 0.0984781 0.995139i 0.468603π-0.468603\pi
0.0984781 + 0.995139i 0.468603π0.468603\pi
678678 0 0
679679 −39.8035 −1.52752
680680 −128.422 −4.92475
681681 0 0
682682 −40.3540 −1.54523
683683 −29.5618 −1.13115 −0.565575 0.824697i 0.691346π-0.691346\pi
−0.565575 + 0.824697i 0.691346π0.691346\pi
684684 0 0
685685 −68.4623 −2.61581
686686 53.2634 2.03361
687687 0 0
688688 23.6599 0.902026
689689 −11.9423 −0.454966
690690 0 0
691691 44.2064 1.68169 0.840845 0.541275i 0.182058π-0.182058\pi
0.840845 + 0.541275i 0.182058π0.182058\pi
692692 −42.2443 −1.60589
693693 0 0
694694 −18.6750 −0.708892
695695 25.1763 0.954992
696696 0 0
697697 37.0443 1.40315
698698 37.4567 1.41776
699699 0 0
700700 −57.4940 −2.17307
701701 25.6911 0.970341 0.485171 0.874420i 0.338758π-0.338758\pi
0.485171 + 0.874420i 0.338758π0.338758\pi
702702 0 0
703703 11.3005 0.426205
704704 −49.9924 −1.88416
705705 0 0
706706 −69.2821 −2.60747
707707 10.8609 0.408468
708708 0 0
709709 18.1323 0.680972 0.340486 0.940250i 0.389408π-0.389408\pi
0.340486 + 0.940250i 0.389408π0.389408\pi
710710 31.1538 1.16918
711711 0 0
712712 48.7329 1.82634
713713 6.84312 0.256277
714714 0 0
715715 −18.6900 −0.698967
716716 −55.9142 −2.08961
717717 0 0
718718 47.0334 1.75527
719719 −5.50638 −0.205353 −0.102677 0.994715i 0.532741π-0.532741\pi
−0.102677 + 0.994715i 0.532741π0.532741\pi
720720 0 0
721721 −24.9613 −0.929608
722722 −43.7435 −1.62797
723723 0 0
724724 106.928 3.97396
725725 0 0
726726 0 0
727727 −27.5811 −1.02293 −0.511463 0.859305i 0.670896π-0.670896\pi
−0.511463 + 0.859305i 0.670896π0.670896\pi
728728 46.7601 1.73304
729729 0 0
730730 −19.9600 −0.738753
731731 9.11824 0.337250
732732 0 0
733733 −42.7886 −1.58043 −0.790217 0.612828i 0.790032π-0.790032\pi
−0.790217 + 0.612828i 0.790032π0.790032\pi
734734 79.7932 2.94522
735735 0 0
736736 19.5431 0.720367
737737 18.1517 0.668627
738738 0 0
739739 29.9595 1.10208 0.551040 0.834479i 0.314231π-0.314231\pi
0.551040 + 0.834479i 0.314231π0.314231\pi
740740 −111.312 −4.09192
741741 0 0
742742 −32.8726 −1.20679
743743 −1.55470 −0.0570363 −0.0285181 0.999593i 0.509079π-0.509079\pi
−0.0285181 + 0.999593i 0.509079π0.509079\pi
744744 0 0
745745 2.31332 0.0847535
746746 51.7304 1.89399
747747 0 0
748748 −65.2279 −2.38497
749749 32.5987 1.19113
750750 0 0
751751 −42.0480 −1.53435 −0.767177 0.641436i 0.778339π-0.778339\pi
−0.767177 + 0.641436i 0.778339π0.778339\pi
752752 116.602 4.25205
753753 0 0
754754 0 0
755755 53.7765 1.95713
756756 0 0
757757 −27.1592 −0.987117 −0.493559 0.869713i 0.664304π-0.664304\pi
−0.493559 + 0.869713i 0.664304π0.664304\pi
758758 −23.0275 −0.836395
759759 0 0
760760 −43.5469 −1.57961
761761 35.0279 1.26976 0.634881 0.772610i 0.281049π-0.281049\pi
0.634881 + 0.772610i 0.281049π0.281049\pi
762762 0 0
763763 12.6862 0.459271
764764 127.027 4.59569
765765 0 0
766766 75.8493 2.74055
767767 −11.3232 −0.408858
768768 0 0
769769 21.5891 0.778523 0.389261 0.921127i 0.372730π-0.372730\pi
0.389261 + 0.921127i 0.372730π0.372730\pi
770770 −51.4464 −1.85400
771771 0 0
772772 −82.1872 −2.95798
773773 −44.3882 −1.59653 −0.798265 0.602306i 0.794249π-0.794249\pi
−0.798265 + 0.602306i 0.794249π0.794249\pi
774774 0 0
775775 27.0419 0.971374
776776 143.509 5.15167
777777 0 0
778778 72.8801 2.61288
779779 12.5614 0.450060
780780 0 0
781781 9.72301 0.347917
782782 15.3257 0.548045
783783 0 0
784784 −17.3243 −0.618724
785785 1.24202 0.0443298
786786 0 0
787787 20.7242 0.738739 0.369369 0.929283i 0.379574π-0.379574\pi
0.369369 + 0.929283i 0.379574π0.379574\pi
788788 −66.1440 −2.35628
789789 0 0
790790 −31.3514 −1.11543
791791 −25.5936 −0.910003
792792 0 0
793793 26.6309 0.945690
794794 13.2875 0.471556
795795 0 0
796796 −42.1479 −1.49389
797797 4.93609 0.174845 0.0874227 0.996171i 0.472137π-0.472137\pi
0.0874227 + 0.996171i 0.472137π0.472137\pi
798798 0 0
799799 44.9371 1.58976
800800 77.2282 2.73043
801801 0 0
802802 −16.6743 −0.588790
803803 −6.22946 −0.219833
804804 0 0
805805 8.72414 0.307486
806806 −35.7928 −1.26075
807807 0 0
808808 −39.1584 −1.37759
809809 −1.19173 −0.0418990 −0.0209495 0.999781i 0.506669π-0.506669\pi
−0.0209495 + 0.999781i 0.506669π0.506669\pi
810810 0 0
811811 46.6639 1.63859 0.819296 0.573370i 0.194364π-0.194364\pi
0.819296 + 0.573370i 0.194364π0.194364\pi
812812 0 0
813813 0 0
814814 −48.1340 −1.68709
815815 −30.8369 −1.08017
816816 0 0
817817 3.09193 0.108173
818818 12.4362 0.434822
819819 0 0
820820 −123.733 −4.32095
821821 −31.7367 −1.10762 −0.553808 0.832644i 0.686826π-0.686826\pi
−0.553808 + 0.832644i 0.686826π0.686826\pi
822822 0 0
823823 −38.3538 −1.33693 −0.668464 0.743744i 0.733048π-0.733048\pi
−0.668464 + 0.743744i 0.733048π0.733048\pi
824824 89.9964 3.13517
825825 0 0
826826 −31.1685 −1.08449
827827 17.1249 0.595491 0.297745 0.954645i 0.403765π-0.403765\pi
0.297745 + 0.954645i 0.403765π0.403765\pi
828828 0 0
829829 50.9294 1.76885 0.884425 0.466682i 0.154551π-0.154551\pi
0.884425 + 0.466682i 0.154551π0.154551\pi
830830 −88.3558 −3.06688
831831 0 0
832832 −44.3417 −1.53727
833833 −6.67656 −0.231329
834834 0 0
835835 −36.4533 −1.26152
836836 −22.1183 −0.764978
837837 0 0
838838 −36.6432 −1.26582
839839 −38.4991 −1.32914 −0.664568 0.747228i 0.731384π-0.731384\pi
−0.664568 + 0.747228i 0.731384π0.731384\pi
840840 0 0
841841 0 0
842842 −31.9116 −1.09974
843843 0 0
844844 −108.915 −3.74901
845845 23.8606 0.820828
846846 0 0
847847 10.0163 0.344163
848848 64.8484 2.22690
849849 0 0
850850 60.5624 2.07727
851851 8.16242 0.279804
852852 0 0
853853 −19.5496 −0.669364 −0.334682 0.942331i 0.608629π-0.608629\pi
−0.334682 + 0.942331i 0.608629π0.608629\pi
854854 73.3045 2.50843
855855 0 0
856856 −117.532 −4.01717
857857 6.02847 0.205929 0.102964 0.994685i 0.467167π-0.467167\pi
0.102964 + 0.994685i 0.467167π0.467167\pi
858858 0 0
859859 15.2968 0.521921 0.260961 0.965349i 0.415961π-0.415961\pi
0.260961 + 0.965349i 0.415961π0.415961\pi
860860 −30.4563 −1.03855
861861 0 0
862862 60.9435 2.07574
863863 5.09773 0.173529 0.0867643 0.996229i 0.472347π-0.472347\pi
0.0867643 + 0.996229i 0.472347π0.472347\pi
864864 0 0
865865 25.3310 0.861279
866866 −14.7737 −0.502032
867867 0 0
868868 −71.1086 −2.41358
869869 −9.78469 −0.331923
870870 0 0
871871 16.1000 0.545528
872872 −45.7392 −1.54892
873873 0 0
874874 5.19683 0.175785
875875 −2.38926 −0.0807718
876876 0 0
877877 56.3739 1.90361 0.951805 0.306704i 0.0992262π-0.0992262\pi
0.951805 + 0.306704i 0.0992262π0.0992262\pi
878878 54.3266 1.83343
879879 0 0
880880 101.489 3.42120
881881 −8.76452 −0.295284 −0.147642 0.989041i 0.547168π-0.547168\pi
−0.147642 + 0.989041i 0.547168π0.547168\pi
882882 0 0
883883 −44.5671 −1.49980 −0.749902 0.661549i 0.769899π-0.769899\pi
−0.749902 + 0.661549i 0.769899π0.769899\pi
884884 −57.8552 −1.94588
885885 0 0
886886 −90.8790 −3.05314
887887 −50.8916 −1.70877 −0.854386 0.519639i 0.826067π-0.826067\pi
−0.854386 + 0.519639i 0.826067π0.826067\pi
888888 0 0
889889 −39.9646 −1.34037
890890 −47.5566 −1.59410
891891 0 0
892892 110.013 3.68350
893893 15.2378 0.509915
894894 0 0
895895 33.5279 1.12071
896896 −43.7618 −1.46198
897897 0 0
898898 −86.4734 −2.88566
899899 0 0
900900 0 0
901901 24.9918 0.832596
902902 −53.5051 −1.78152
903903 0 0
904904 92.2760 3.06905
905905 −64.1176 −2.13134
906906 0 0
907907 −22.1563 −0.735689 −0.367844 0.929887i 0.619904π-0.619904\pi
−0.367844 + 0.929887i 0.619904π0.619904\pi
908908 −55.5291 −1.84280
909909 0 0
910910 −45.6314 −1.51267
911911 −2.98463 −0.0988851 −0.0494425 0.998777i 0.515744π-0.515744\pi
−0.0494425 + 0.998777i 0.515744π0.515744\pi
912912 0 0
913913 −27.5756 −0.912620
914914 −70.0581 −2.31731
915915 0 0
916916 −72.6560 −2.40062
917917 10.7919 0.356382
918918 0 0
919919 −4.29559 −0.141698 −0.0708492 0.997487i 0.522571π-0.522571\pi
−0.0708492 + 0.997487i 0.522571π0.522571\pi
920920 −31.4543 −1.03702
921921 0 0
922922 33.6089 1.10685
923923 8.62401 0.283863
924924 0 0
925925 32.2554 1.06055
926926 −102.142 −3.35659
927927 0 0
928928 0 0
929929 −33.6586 −1.10430 −0.552152 0.833743i 0.686193π-0.686193\pi
−0.552152 + 0.833743i 0.686193π0.686193\pi
930930 0 0
931931 −2.26397 −0.0741987
932932 64.2485 2.10453
933933 0 0
934934 18.5232 0.606099
935935 39.1127 1.27912
936936 0 0
937937 24.1673 0.789511 0.394755 0.918786i 0.370829π-0.370829\pi
0.394755 + 0.918786i 0.370829π0.370829\pi
938938 44.3171 1.44701
939939 0 0
940940 −150.096 −4.89561
941941 25.2276 0.822395 0.411197 0.911546i 0.365111π-0.365111\pi
0.411197 + 0.911546i 0.365111π0.365111\pi
942942 0 0
943943 9.07324 0.295465
944944 61.4865 2.00122
945945 0 0
946946 −13.1700 −0.428193
947947 −48.1298 −1.56401 −0.782004 0.623274i 0.785802π-0.785802\pi
−0.782004 + 0.623274i 0.785802π0.785802\pi
948948 0 0
949949 −5.52534 −0.179360
950950 20.5363 0.666285
951951 0 0
952952 −97.8550 −3.17150
953953 −10.3433 −0.335052 −0.167526 0.985868i 0.553578π-0.553578\pi
−0.167526 + 0.985868i 0.553578π0.553578\pi
954954 0 0
955955 −76.1694 −2.46479
956956 −46.1869 −1.49379
957957 0 0
958958 40.8321 1.31922
959959 −52.1670 −1.68456
960960 0 0
961961 2.44547 0.0788862
962962 −42.6933 −1.37649
963963 0 0
964964 −135.654 −4.36911
965965 49.2820 1.58644
966966 0 0
967967 −19.7278 −0.634404 −0.317202 0.948358i 0.602743π-0.602743\pi
−0.317202 + 0.948358i 0.602743π0.602743\pi
968968 −36.1129 −1.16071
969969 0 0
970970 −140.045 −4.49657
971971 8.37868 0.268885 0.134442 0.990921i 0.457076π-0.457076\pi
0.134442 + 0.990921i 0.457076π0.457076\pi
972972 0 0
973973 19.1839 0.615007
974974 −84.8821 −2.71980
975975 0 0
976976 −144.609 −4.62882
977977 −27.6767 −0.885457 −0.442728 0.896656i 0.645989π-0.645989\pi
−0.442728 + 0.896656i 0.645989π0.645989\pi
978978 0 0
979979 −14.8423 −0.474362
980980 22.3007 0.712369
981981 0 0
982982 −28.7607 −0.917791
983983 1.80073 0.0574344 0.0287172 0.999588i 0.490858π-0.490858\pi
0.0287172 + 0.999588i 0.490858π0.490858\pi
984984 0 0
985985 39.6619 1.26373
986986 0 0
987987 0 0
988988 −19.6183 −0.624140
989989 2.23333 0.0710157
990990 0 0
991991 16.7954 0.533525 0.266762 0.963762i 0.414046π-0.414046\pi
0.266762 + 0.963762i 0.414046π0.414046\pi
992992 95.5160 3.03264
993993 0 0
994994 23.7386 0.752942
995995 25.2732 0.801213
996996 0 0
997997 26.6523 0.844087 0.422043 0.906576i 0.361313π-0.361313\pi
0.422043 + 0.906576i 0.361313π0.361313\pi
998998 −26.1921 −0.829096
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7569.2.a.bl.1.9 9
3.2 odd 2 2523.2.a.p.1.1 9
29.23 even 7 261.2.k.b.181.1 18
29.24 even 7 261.2.k.b.199.1 18
29.28 even 2 7569.2.a.bk.1.1 9
87.23 odd 14 87.2.g.b.7.3 18
87.53 odd 14 87.2.g.b.25.3 yes 18
87.86 odd 2 2523.2.a.q.1.9 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
87.2.g.b.7.3 18 87.23 odd 14
87.2.g.b.25.3 yes 18 87.53 odd 14
261.2.k.b.181.1 18 29.23 even 7
261.2.k.b.199.1 18 29.24 even 7
2523.2.a.p.1.1 9 3.2 odd 2
2523.2.a.q.1.9 9 87.86 odd 2
7569.2.a.bk.1.1 9 29.28 even 2
7569.2.a.bl.1.9 9 1.1 even 1 trivial