Properties

Label 76.2.a
Level 7676
Weight 22
Character orbit 76.a
Rep. character χ76(1,)\chi_{76}(1,\cdot)
Character field Q\Q
Dimension 11
Newform subspaces 11
Sturm bound 2020
Trace bound 00

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 76=2219 76 = 2^{2} \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 76.a (trivial)
Character field: Q\Q
Newform subspaces: 1 1
Sturm bound: 2020
Trace bound: 00

Dimensions

The following table gives the dimensions of various subspaces of M2(Γ0(76))M_{2}(\Gamma_0(76)).

Total New Old
Modular forms 13 1 12
Cusp forms 8 1 7
Eisenstein series 5 0 5

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

221919FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
++++++220022110011110011
++--550055330033220022
-++-331122221111110011
--++330033220022110011
Plus space++550055330033220022
Minus space-881177551144330033

Trace form

q+2q3q53q7+q9+5q114q132q153q17q196q21+8q234q254q272q29+4q31+10q33+3q35+10q378q39++5q99+O(q100) q + 2 q^{3} - q^{5} - 3 q^{7} + q^{9} + 5 q^{11} - 4 q^{13} - 2 q^{15} - 3 q^{17} - q^{19} - 6 q^{21} + 8 q^{23} - 4 q^{25} - 4 q^{27} - 2 q^{29} + 4 q^{31} + 10 q^{33} + 3 q^{35} + 10 q^{37} - 8 q^{39}+ \cdots + 5 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(Γ0(76))S_{2}^{\mathrm{new}}(\Gamma_0(76)) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces A-L signs Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7} 2 19
76.2.a.a 76.a 1.a 11 0.6070.607 Q\Q None 76.2.a.a 00 22 1-1 3-3 - ++ SU(2)\mathrm{SU}(2) q+2q3q53q7+q9+5q11+q+2q^{3}-q^{5}-3q^{7}+q^{9}+5q^{11}+\cdots

Decomposition of S2old(Γ0(76))S_{2}^{\mathrm{old}}(\Gamma_0(76)) into lower level spaces

S2old(Γ0(76)) S_{2}^{\mathrm{old}}(\Gamma_0(76)) \simeq S2new(Γ0(19))S_{2}^{\mathrm{new}}(\Gamma_0(19))3^{\oplus 3}\oplusS2new(Γ0(38))S_{2}^{\mathrm{new}}(\Gamma_0(38))2^{\oplus 2}