Properties

Label 7644.2.e
Level $7644$
Weight $2$
Character orbit 7644.e
Rep. character $\chi_{7644}(4705,\cdot)$
Character field $\Q$
Dimension $96$
Newform subspaces $17$
Sturm bound $3136$
Trace bound $17$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 7644 = 2^{2} \cdot 3 \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7644.e (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 13 \)
Character field: \(\Q\)
Newform subspaces: \( 17 \)
Sturm bound: \(3136\)
Trace bound: \(17\)
Distinguishing \(T_p\): \(5\), \(11\), \(17\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(7644, [\chi])\).

Total New Old
Modular forms 1616 96 1520
Cusp forms 1520 96 1424
Eisenstein series 96 0 96

Trace form

\( 96 q + 96 q^{9} + 4 q^{13} - 8 q^{23} - 88 q^{25} - 8 q^{29} + 14 q^{39} + 12 q^{43} + 8 q^{51} + 72 q^{53} - 32 q^{55} + 8 q^{61} + 36 q^{65} + 8 q^{69} - 16 q^{75} - 68 q^{79} + 96 q^{81} - 8 q^{87} - 24 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(7644, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
7644.2.e.a 7644.e 13.b $2$ $61.038$ \(\Q(\sqrt{-1}) \) None 1092.2.cu.a \(0\) \(-2\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-q^{3}+2 i q^{5}+q^{9}-i q^{11}+(-2 i-3)q^{13}+\cdots\)
7644.2.e.b 7644.e 13.b $2$ $61.038$ \(\Q(\sqrt{-1}) \) None 156.2.b.b \(0\) \(-2\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-q^{3}+\beta q^{5}+q^{9}+3\beta q^{11}+(-\beta-3)q^{13}+\cdots\)
7644.2.e.c 7644.e 13.b $2$ $61.038$ \(\Q(\sqrt{-1}) \) None 1092.2.e.d \(0\) \(-2\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-q^{3}+i q^{5}+q^{9}+(3 i-2)q^{13}+\cdots\)
7644.2.e.d 7644.e 13.b $2$ $61.038$ \(\Q(\sqrt{-1}) \) None 1092.2.e.c \(0\) \(-2\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-q^{3}+q^{9}-2\beta q^{11}+(-\beta+3)q^{13}+\cdots\)
7644.2.e.e 7644.e 13.b $2$ $61.038$ \(\Q(\sqrt{-1}) \) None 1092.2.e.b \(0\) \(-2\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-q^{3}+2\beta q^{5}+q^{9}+(\beta+3)q^{13}+\cdots\)
7644.2.e.f 7644.e 13.b $2$ $61.038$ \(\Q(\sqrt{-1}) \) None 1092.2.e.a \(0\) \(2\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+q^{3}+\beta q^{5}+q^{9}-\beta q^{11}+(-\beta-3)q^{13}+\cdots\)
7644.2.e.g 7644.e 13.b $2$ $61.038$ \(\Q(\sqrt{-3}) \) None 156.2.b.a \(0\) \(2\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+q^{3}-\beta q^{5}+q^{9}+\beta q^{11}+(-\beta+1)q^{13}+\cdots\)
7644.2.e.h 7644.e 13.b $2$ $61.038$ \(\Q(\sqrt{-1}) \) None 1092.2.cu.a \(0\) \(2\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+q^{3}+2 i q^{5}+q^{9}+i q^{11}+(-2 i+3)q^{13}+\cdots\)
7644.2.e.i 7644.e 13.b $4$ $61.038$ \(\Q(i, \sqrt{17})\) None 1092.2.e.e \(0\) \(4\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+q^{3}+(-\beta _{1}-\beta _{2})q^{5}+q^{9}+(-2\beta _{1}+\cdots)q^{11}+\cdots\)
7644.2.e.j 7644.e 13.b $6$ $61.038$ 6.0.50922496.1 None 7644.2.e.j \(0\) \(-6\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-q^{3}-\beta _{1}q^{5}+q^{9}+\beta _{4}q^{11}+(-1+\cdots)q^{13}+\cdots\)
7644.2.e.k 7644.e 13.b $6$ $61.038$ 6.0.3375599808.1 None 1092.2.cu.b \(0\) \(-6\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-q^{3}+\beta _{1}q^{5}+q^{9}+\beta _{5}q^{11}+(1-\beta _{1}+\cdots)q^{13}+\cdots\)
7644.2.e.l 7644.e 13.b $6$ $61.038$ 6.0.3375599808.1 None 1092.2.cu.b \(0\) \(6\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+q^{3}+\beta _{1}q^{5}+q^{9}-\beta _{5}q^{11}+(-1+\cdots)q^{13}+\cdots\)
7644.2.e.m 7644.e 13.b $6$ $61.038$ 6.0.50922496.1 None 7644.2.e.j \(0\) \(6\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+q^{3}-\beta _{1}q^{5}+q^{9}-\beta _{4}q^{11}+(1-\beta _{2}+\cdots)q^{13}+\cdots\)
7644.2.e.n 7644.e 13.b $10$ $61.038$ \(\mathbb{Q}[x]/(x^{10} + \cdots)\) None 1092.2.cu.c \(0\) \(-10\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-q^{3}+\beta _{1}q^{5}+q^{9}+\beta _{9}q^{11}-\beta _{5}q^{13}+\cdots\)
7644.2.e.o 7644.e 13.b $10$ $61.038$ \(\mathbb{Q}[x]/(x^{10} + \cdots)\) None 1092.2.cu.c \(0\) \(10\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+q^{3}+\beta _{1}q^{5}+q^{9}-\beta _{9}q^{11}-\beta _{6}q^{13}+\cdots\)
7644.2.e.p 7644.e 13.b $16$ $61.038$ \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None 7644.2.e.p \(0\) \(-16\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-q^{3}+\beta _{1}q^{5}+q^{9}-\beta _{7}q^{11}+\beta _{11}q^{13}+\cdots\)
7644.2.e.q 7644.e 13.b $16$ $61.038$ \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None 7644.2.e.p \(0\) \(16\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+q^{3}+\beta _{1}q^{5}+q^{9}+\beta _{7}q^{11}+\beta _{10}q^{13}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(7644, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(7644, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(26, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(39, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(78, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(91, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(156, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(182, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(273, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(364, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(546, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(637, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1092, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1274, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1911, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2548, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(3822, [\chi])\)\(^{\oplus 2}\)