Properties

Label 768.2.c
Level $768$
Weight $2$
Character orbit 768.c
Rep. character $\chi_{768}(767,\cdot)$
Character field $\Q$
Dimension $28$
Newform subspaces $10$
Sturm bound $256$
Trace bound $25$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 768 = 2^{8} \cdot 3 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 768.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 12 \)
Character field: \(\Q\)
Newform subspaces: \( 10 \)
Sturm bound: \(256\)
Trace bound: \(25\)
Distinguishing \(T_p\): \(5\), \(7\), \(11\), \(13\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(768, [\chi])\).

Total New Old
Modular forms 152 36 116
Cusp forms 104 28 76
Eisenstein series 48 8 40

Trace form

\( 28 q + 4 q^{9} + O(q^{10}) \) \( 28 q + 4 q^{9} - 4 q^{25} + 8 q^{33} - 44 q^{49} + 16 q^{57} + 40 q^{73} - 4 q^{81} + 24 q^{97} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(768, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
768.2.c.a 768.c 12.b $2$ $6.133$ \(\Q(\sqrt{-2}) \) None 384.2.f.b \(0\) \(-2\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-1+\beta )q^{3}+2\beta q^{5}-2\beta q^{7}+(-1+\cdots)q^{9}+\cdots\)
768.2.c.b 768.c 12.b $2$ $6.133$ \(\Q(\sqrt{-2}) \) None 384.2.f.b \(0\) \(-2\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-1-\beta )q^{3}+2\beta q^{5}-2\beta q^{7}+(-1+\cdots)q^{9}+\cdots\)
768.2.c.c 768.c 12.b $2$ $6.133$ \(\Q(\sqrt{-2}) \) \(\Q(\sqrt{-2}) \) 384.2.f.c \(0\) \(-2\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+(-1-\beta )q^{3}+(-1+2\beta )q^{9}+6q^{11}+\cdots\)
768.2.c.d 768.c 12.b $2$ $6.133$ \(\Q(\sqrt{-2}) \) \(\Q(\sqrt{-2}) \) 384.2.f.c \(0\) \(2\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+(1+\beta )q^{3}+(-1+2\beta )q^{9}-6q^{11}+\cdots\)
768.2.c.e 768.c 12.b $2$ $6.133$ \(\Q(\sqrt{-2}) \) None 384.2.f.b \(0\) \(2\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(1-\beta )q^{3}+2\beta q^{5}+2\beta q^{7}+(-1+\cdots)q^{9}+\cdots\)
768.2.c.f 768.c 12.b $2$ $6.133$ \(\Q(\sqrt{-2}) \) None 384.2.f.b \(0\) \(2\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(1+\beta )q^{3}+2\beta q^{5}+2\beta q^{7}+(-1+\cdots)q^{9}+\cdots\)
768.2.c.g 768.c 12.b $4$ $6.133$ \(\Q(\zeta_{12})\) \(\Q(\sqrt{-3}) \) 192.2.f.b \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+\beta_{2} q^{3}-\beta_1 q^{7}-3 q^{9}+\beta_{3} q^{13}+\cdots\)
768.2.c.h 768.c 12.b $4$ $6.133$ \(\Q(\zeta_{8})\) \(\Q(\sqrt{-2}) \) 24.2.f.a \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+\beta_{2} q^{3}+(\beta_{3}+1)q^{9}+(\beta_{2}+\beta_1)q^{11}+\cdots\)
768.2.c.i 768.c 12.b $4$ $6.133$ \(\Q(\zeta_{12})\) \(\Q(\sqrt{-6}) \) 192.2.f.a \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q-\beta_1 q^{3}-\beta_{2} q^{5}+\beta_{3} q^{7}+3 q^{9}+\cdots\)
768.2.c.j 768.c 12.b $4$ $6.133$ \(\Q(\sqrt{-2}, \sqrt{3})\) \(\Q(\sqrt{-6}) \) 384.2.f.a \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q-\beta _{2}q^{3}-\beta _{1}q^{5}-\beta _{3}q^{7}+3q^{9}-2\beta _{2}q^{11}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(768, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(768, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(48, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(96, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(192, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(384, [\chi])\)\(^{\oplus 2}\)