Defining parameters
Level: | \( N \) | \(=\) | \( 7744 = 2^{6} \cdot 11^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 7744.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 101 \) | ||
Sturm bound: | \(2112\) | ||
Trace bound: | \(13\) | ||
Distinguishing \(T_p\): | \(3\), \(5\), \(7\), \(13\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(7744))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1128 | 227 | 901 |
Cusp forms | 985 | 209 | 776 |
Eisenstein series | 143 | 18 | 125 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(11\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(49\) |
\(+\) | \(-\) | \(-\) | \(55\) |
\(-\) | \(+\) | \(-\) | \(55\) |
\(-\) | \(-\) | \(+\) | \(50\) |
Plus space | \(+\) | \(99\) | |
Minus space | \(-\) | \(110\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(7744))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(7744))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(7744)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 14}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(32))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(44))\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(64))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(88))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(121))\)\(^{\oplus 7}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(176))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(242))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(352))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(484))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(704))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(968))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1936))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(3872))\)\(^{\oplus 2}\)