Properties

Label 7800.2.ds
Level 78007800
Weight 22
Character orbit 7800.ds
Rep. character χ7800(49,)\chi_{7800}(49,\cdot)
Character field Q(ζ6)\Q(\zeta_{6})
Dimension 248248
Sturm bound 33603360

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 7800=2335213 7800 = 2^{3} \cdot 3 \cdot 5^{2} \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 7800.ds (of order 66 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 65 65
Character field: Q(ζ6)\Q(\zeta_{6})
Sturm bound: 33603360

Dimensions

The following table gives the dimensions of various subspaces of M2(7800,[χ])M_{2}(7800, [\chi]).

Total New Old
Modular forms 3456 248 3208
Cusp forms 3264 248 3016
Eisenstein series 192 0 192

Decomposition of S2new(7800,[χ])S_{2}^{\mathrm{new}}(7800, [\chi]) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of S2old(7800,[χ])S_{2}^{\mathrm{old}}(7800, [\chi]) into lower level spaces

S2old(7800,[χ]) S_{2}^{\mathrm{old}}(7800, [\chi]) \simeq S2new(65,[χ])S_{2}^{\mathrm{new}}(65, [\chi])16^{\oplus 16}\oplusS2new(130,[χ])S_{2}^{\mathrm{new}}(130, [\chi])12^{\oplus 12}\oplusS2new(195,[χ])S_{2}^{\mathrm{new}}(195, [\chi])8^{\oplus 8}\oplusS2new(260,[χ])S_{2}^{\mathrm{new}}(260, [\chi])8^{\oplus 8}\oplusS2new(325,[χ])S_{2}^{\mathrm{new}}(325, [\chi])8^{\oplus 8}\oplusS2new(390,[χ])S_{2}^{\mathrm{new}}(390, [\chi])6^{\oplus 6}\oplusS2new(520,[χ])S_{2}^{\mathrm{new}}(520, [\chi])4^{\oplus 4}\oplusS2new(650,[χ])S_{2}^{\mathrm{new}}(650, [\chi])6^{\oplus 6}\oplusS2new(780,[χ])S_{2}^{\mathrm{new}}(780, [\chi])4^{\oplus 4}\oplusS2new(975,[χ])S_{2}^{\mathrm{new}}(975, [\chi])4^{\oplus 4}\oplusS2new(1300,[χ])S_{2}^{\mathrm{new}}(1300, [\chi])4^{\oplus 4}\oplusS2new(1560,[χ])S_{2}^{\mathrm{new}}(1560, [\chi])2^{\oplus 2}\oplusS2new(1950,[χ])S_{2}^{\mathrm{new}}(1950, [\chi])3^{\oplus 3}\oplusS2new(2600,[χ])S_{2}^{\mathrm{new}}(2600, [\chi])2^{\oplus 2}\oplusS2new(3900,[χ])S_{2}^{\mathrm{new}}(3900, [\chi])2^{\oplus 2}