Defining parameters
Level: | \( N \) | \(=\) | \( 784 = 2^{4} \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 784.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 14 \) | ||
Sturm bound: | \(224\) | ||
Trace bound: | \(11\) | ||
Distinguishing \(T_p\): | \(3\), \(5\), \(11\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(784))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 136 | 23 | 113 |
Cusp forms | 89 | 18 | 71 |
Eisenstein series | 47 | 5 | 42 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(7\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(4\) |
\(+\) | \(-\) | \(-\) | \(6\) |
\(-\) | \(+\) | \(-\) | \(5\) |
\(-\) | \(-\) | \(+\) | \(3\) |
Plus space | \(+\) | \(7\) | |
Minus space | \(-\) | \(11\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(784))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(784))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(784)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(14))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(49))\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(56))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(98))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(112))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(196))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(392))\)\(^{\oplus 2}\)