Defining parameters
Level: | \( N \) | \(=\) | \( 784 = 2^{4} \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 784.bg (of order \(21\) and degree \(12\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 49 \) |
Character field: | \(\Q(\zeta_{21})\) | ||
Newform subspaces: | \( 6 \) | ||
Sturm bound: | \(224\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(784, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1416 | 348 | 1068 |
Cusp forms | 1272 | 324 | 948 |
Eisenstein series | 144 | 24 | 120 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(784, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
784.2.bg.a | $24$ | $6.260$ | None | \(0\) | \(-7\) | \(0\) | \(0\) | ||
784.2.bg.b | $24$ | $6.260$ | None | \(0\) | \(7\) | \(0\) | \(0\) | ||
784.2.bg.c | $48$ | $6.260$ | None | \(0\) | \(14\) | \(-14\) | \(14\) | ||
784.2.bg.d | $60$ | $6.260$ | None | \(0\) | \(-1\) | \(3\) | \(-4\) | ||
784.2.bg.e | $84$ | $6.260$ | None | \(0\) | \(-10\) | \(-1\) | \(4\) | ||
784.2.bg.f | $84$ | $6.260$ | None | \(0\) | \(8\) | \(-1\) | \(-4\) |
Decomposition of \(S_{2}^{\mathrm{old}}(784, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(784, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(49, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(98, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(196, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(392, [\chi])\)\(^{\oplus 2}\)