Properties

Label 784.2.x
Level $784$
Weight $2$
Character orbit 784.x
Rep. character $\chi_{784}(165,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $304$
Newform subspaces $16$
Sturm bound $224$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 784 = 2^{4} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 784.x (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 112 \)
Character field: \(\Q(\zeta_{12})\)
Newform subspaces: \( 16 \)
Sturm bound: \(224\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(3\), \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(784, [\chi])\).

Total New Old
Modular forms 480 336 144
Cusp forms 416 304 112
Eisenstein series 64 32 32

Trace form

\( 304 q + 2 q^{2} + 2 q^{3} + 6 q^{4} + 2 q^{5} + 8 q^{6} - 4 q^{8} - 4 q^{10} + 10 q^{11} + 2 q^{12} + 8 q^{13} - 32 q^{15} - 18 q^{16} + 4 q^{17} - 44 q^{18} + 2 q^{19} - 8 q^{20} + 16 q^{22} - 18 q^{24}+ \cdots - 72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(784, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
784.2.x.a 784.x 112.w $4$ $6.260$ \(\Q(\zeta_{12})\) None 112.2.w.a \(-2\) \(4\) \(6\) \(0\) $\mathrm{SU}(2)[C_{12}]$ \(q+(\zeta_{12}-\zeta_{12}^{2}-\zeta_{12}^{3})q^{2}+(1+\zeta_{12}+\cdots)q^{3}+\cdots\)
784.2.x.b 784.x 112.w $4$ $6.260$ \(\Q(\zeta_{12})\) None 112.2.m.a \(2\) \(-4\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{12}]$ \(q+(1-\zeta_{12}-\zeta_{12}^{2})q^{2}+(-2\zeta_{12}-2\zeta_{12}^{2}+\cdots)q^{3}+\cdots\)
784.2.x.c 784.x 112.w $4$ $6.260$ \(\Q(\zeta_{12})\) None 16.2.e.a \(2\) \(-2\) \(-2\) \(0\) $\mathrm{SU}(2)[C_{12}]$ \(q+(1+\zeta_{12}-\zeta_{12}^{2})q^{2}+(-\zeta_{12}-\zeta_{12}^{2}+\cdots)q^{3}+\cdots\)
784.2.x.d 784.x 112.w $4$ $6.260$ \(\Q(\zeta_{12})\) None 112.2.m.b \(2\) \(0\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{12}]$ \(q+(1-\zeta_{12}-\zeta_{12}^{2})q^{2}+(-2\zeta_{12}+2\zeta_{12}^{3})q^{4}+\cdots\)
784.2.x.e 784.x 112.w $4$ $6.260$ \(\Q(\zeta_{12})\) None 112.2.m.b \(2\) \(0\) \(4\) \(0\) $\mathrm{SU}(2)[C_{12}]$ \(q+(1-\zeta_{12}-\zeta_{12}^{2})q^{2}+(-2\zeta_{12}+2\zeta_{12}^{3})q^{4}+\cdots\)
784.2.x.f 784.x 112.w $4$ $6.260$ \(\Q(\zeta_{12})\) None 16.2.e.a \(2\) \(2\) \(2\) \(0\) $\mathrm{SU}(2)[C_{12}]$ \(q+(1+\zeta_{12}-\zeta_{12}^{2})q^{2}+(\zeta_{12}+\zeta_{12}^{2}+\cdots)q^{3}+\cdots\)
784.2.x.g 784.x 112.w $4$ $6.260$ \(\Q(\zeta_{12})\) None 112.2.m.a \(2\) \(4\) \(4\) \(0\) $\mathrm{SU}(2)[C_{12}]$ \(q+(1-\zeta_{12}-\zeta_{12}^{2})q^{2}+(2\zeta_{12}+2\zeta_{12}^{2}+\cdots)q^{3}+\cdots\)
784.2.x.h 784.x 112.w $4$ $6.260$ \(\Q(\zeta_{12})\) None 112.2.w.a \(4\) \(-2\) \(0\) \(0\) $\mathrm{SU}(2)[C_{12}]$ \(q+(1+\zeta_{12}^{3})q^{2}+(-1+\zeta_{12}^{2}-\zeta_{12}^{3})q^{3}+\cdots\)
784.2.x.i 784.x 112.w $8$ $6.260$ 8.0.49787136.1 \(\Q(\sqrt{-7}) \) 784.2.m.f \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{12}]$ \(q+\beta _{1}q^{2}+(-1-\beta _{2}+\beta _{4}+\beta _{6})q^{4}+\cdots\)
784.2.x.j 784.x 112.w $16$ $6.260$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 112.2.m.c \(-2\) \(0\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{12}]$ \(q+(\beta _{9}+\beta _{12})q^{2}+(\beta _{8}-\beta _{13})q^{3}+(-1+\cdots)q^{4}+\cdots\)
784.2.x.k 784.x 112.w $16$ $6.260$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 112.2.m.c \(-2\) \(0\) \(4\) \(0\) $\mathrm{SU}(2)[C_{12}]$ \(q+(\beta _{9}+\beta _{12})q^{2}+(-\beta _{8}+\beta _{13})q^{3}+\cdots\)
784.2.x.l 784.x 112.w $24$ $6.260$ None 112.2.m.d \(-2\) \(-4\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{12}]$
784.2.x.m 784.x 112.w $24$ $6.260$ None 112.2.m.d \(-2\) \(4\) \(4\) \(0\) $\mathrm{SU}(2)[C_{12}]$
784.2.x.n 784.x 112.w $40$ $6.260$ None 784.2.m.i \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{12}]$
784.2.x.o 784.x 112.w $48$ $6.260$ None 112.2.w.c \(-4\) \(0\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{12}]$
784.2.x.p 784.x 112.w $96$ $6.260$ None 784.2.m.l \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{12}]$

Decomposition of \(S_{2}^{\mathrm{old}}(784, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(784, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(112, [\chi])\)\(^{\oplus 2}\)