Defining parameters
Level: | \( N \) | \(=\) | \( 784 = 2^{4} \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 784.x (of order \(12\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 112 \) |
Character field: | \(\Q(\zeta_{12})\) | ||
Newform subspaces: | \( 16 \) | ||
Sturm bound: | \(224\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(3\), \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(784, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 480 | 336 | 144 |
Cusp forms | 416 | 304 | 112 |
Eisenstein series | 64 | 32 | 32 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(784, [\chi])\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(784, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(784, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(112, [\chi])\)\(^{\oplus 2}\)