Properties

Label 792.4.a
Level 792792
Weight 44
Character orbit 792.a
Rep. character χ792(1,)\chi_{792}(1,\cdot)
Character field Q\Q
Dimension 3737
Newform subspaces 1717
Sturm bound 576576
Trace bound 77

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 792=233211 792 = 2^{3} \cdot 3^{2} \cdot 11
Weight: k k == 4 4
Character orbit: [χ][\chi] == 792.a (trivial)
Character field: Q\Q
Newform subspaces: 17 17
Sturm bound: 576576
Trace bound: 77
Distinguishing TpT_p: 55, 77

Dimensions

The following table gives the dimensions of various subspaces of M4(Γ0(792))M_{4}(\Gamma_0(792)).

Total New Old
Modular forms 448 37 411
Cusp forms 416 37 379
Eisenstein series 32 0 32

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

22331111FrickeTotalCuspEisenstein
AllNewOldAllNewOldAllNewOld
++++++++58584454545454445050440044
++++--56563353535252334949440044
++-++-55556649495151664545440044
++--++57575552525353554848440044
-++++-54543351515050334747440044
-++-++56564452525252444848440044
--++++57577750505353774646440044
----55555550505151554646440044
Plus space++228228202020820821221220201921921616001616
Minus space-220220171720320320420417171871871616001616

Trace form

37q+24q5+36q733q11102q13+86q17+180q19142q23+881q25194q29+130q31260q35+468q37574q41+88q43+820q47+981q49+724q97+O(q100) 37 q + 24 q^{5} + 36 q^{7} - 33 q^{11} - 102 q^{13} + 86 q^{17} + 180 q^{19} - 142 q^{23} + 881 q^{25} - 194 q^{29} + 130 q^{31} - 260 q^{35} + 468 q^{37} - 574 q^{41} + 88 q^{43} + 820 q^{47} + 981 q^{49}+ \cdots - 724 q^{97}+O(q^{100}) Copy content Toggle raw display

Decomposition of S4new(Γ0(792))S_{4}^{\mathrm{new}}(\Gamma_0(792)) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces A-L signs Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7} 2 3 11
792.4.a.a 792.a 1.a 11 46.73046.730 Q\Q None 264.4.a.b 00 00 12-12 2222 ++ - ++ SU(2)\mathrm{SU}(2) q12q5+22q711q1148q13+q-12q^{5}+22q^{7}-11q^{11}-48q^{13}+\cdots
792.4.a.b 792.a 1.a 11 46.73046.730 Q\Q None 88.4.a.b 00 00 9-9 22 - - - SU(2)\mathrm{SU}(2) q9q5+2q7+11q11+38q17+q-9q^{5}+2q^{7}+11q^{11}+38q^{17}+\cdots
792.4.a.c 792.a 1.a 11 46.73046.730 Q\Q None 264.4.a.c 00 00 66 14-14 ++ - ++ SU(2)\mathrm{SU}(2) q+6q514q711q11+6q13+q+6q^{5}-14q^{7}-11q^{11}+6q^{13}+\cdots
792.4.a.d 792.a 1.a 11 46.73046.730 Q\Q None 264.4.a.d 00 00 66 8-8 - - - SU(2)\mathrm{SU}(2) q+6q58q7+11q1130q13+q+6q^{5}-8q^{7}+11q^{11}-30q^{13}+\cdots
792.4.a.e 792.a 1.a 11 46.73046.730 Q\Q None 88.4.a.a 00 00 77 6-6 ++ - - SU(2)\mathrm{SU}(2) q+7q56q7+11q1140q13+q+7q^{5}-6q^{7}+11q^{11}-40q^{13}+\cdots
792.4.a.f 792.a 1.a 11 46.73046.730 Q\Q None 264.4.a.a 00 00 1818 28-28 ++ - ++ SU(2)\mathrm{SU}(2) q+18q528q711q1118q13+q+18q^{5}-28q^{7}-11q^{11}-18q^{13}+\cdots
792.4.a.g 792.a 1.a 22 46.73046.730 Q(5)\Q(\sqrt{5}) None 88.4.a.c 00 00 66 56-56 - - ++ SU(2)\mathrm{SU}(2) q+(3+4β)q5+(28+β)q711q11+q+(3+4\beta )q^{5}+(-28+\beta )q^{7}-11q^{11}+\cdots
792.4.a.h 792.a 1.a 22 46.73046.730 Q(17)\Q(\sqrt{17}) None 264.4.a.e 00 00 66 1010 - - ++ SU(2)\mathrm{SU}(2) q+(3+β)q5+(5+β)q711q11+(1+)q13+q+(3+\beta )q^{5}+(5+\beta )q^{7}-11q^{11}+(-1+\cdots)q^{13}+\cdots
792.4.a.i 792.a 1.a 22 46.73046.730 Q(137)\Q(\sqrt{137}) None 264.4.a.f 00 00 66 1616 ++ - - SU(2)\mathrm{SU}(2) q+(3+β)q5+(8+2β)q7+11q11+q+(3+\beta )q^{5}+(8+2\beta )q^{7}+11q^{11}+\cdots
792.4.a.j 792.a 1.a 22 46.73046.730 Q(185)\Q(\sqrt{185}) None 264.4.a.g 00 00 66 2222 ++ - - SU(2)\mathrm{SU}(2) q+(3+β)q5+(11β)q7+11q11+q+(3+\beta )q^{5}+(11-\beta )q^{7}+11q^{11}+\cdots
792.4.a.k 792.a 1.a 33 46.73046.730 3.3.4364.1 None 792.4.a.k 00 00 8-8 1010 ++ ++ - SU(2)\mathrm{SU}(2) q+(3β1)q5+(3β2)q7+11q11+q+(-3-\beta _{1})q^{5}+(3-\beta _{2})q^{7}+11q^{11}+\cdots
792.4.a.l 792.a 1.a 33 46.73046.730 3.3.11109.1 None 88.4.a.d 00 00 8-8 2424 ++ - ++ SU(2)\mathrm{SU}(2) q+(3β2)q5+(8β1β2)q7+q+(-3-\beta _{2})q^{5}+(8-\beta _{1}-\beta _{2})q^{7}+\cdots
792.4.a.m 792.a 1.a 33 46.73046.730 3.3.142161.1 None 264.4.a.h 00 00 4-4 12-12 - - - SU(2)\mathrm{SU}(2) q+(1+β1)q5+(4+β2)q7+11q11+q+(-1+\beta _{1})q^{5}+(-4+\beta _{2})q^{7}+11q^{11}+\cdots
792.4.a.n 792.a 1.a 33 46.73046.730 3.3.123209.1 None 264.4.a.i 00 00 4-4 2828 - - ++ SU(2)\mathrm{SU}(2) q+(1+β1)q5+(10+β1+β2)q7+q+(-1+\beta _{1})q^{5}+(10+\beta _{1}+\beta _{2})q^{7}+\cdots
792.4.a.o 792.a 1.a 33 46.73046.730 3.3.4364.1 None 792.4.a.k 00 00 88 1010 - ++ ++ SU(2)\mathrm{SU}(2) q+(3+β1)q5+(3β2)q711q11+q+(3+\beta _{1})q^{5}+(3-\beta _{2})q^{7}-11q^{11}+\cdots
792.4.a.p 792.a 1.a 44 46.73046.730 4.4.8611212.1 None 792.4.a.p 00 00 8-8 88 ++ ++ ++ SU(2)\mathrm{SU}(2) q+(2β1)q5+(2+β2)q711q11+q+(-2-\beta _{1})q^{5}+(2+\beta _{2})q^{7}-11q^{11}+\cdots
792.4.a.q 792.a 1.a 44 46.73046.730 4.4.8611212.1 None 792.4.a.p 00 00 88 88 - ++ - SU(2)\mathrm{SU}(2) q+(2+β1)q5+(2+β2)q7+11q11+q+(2+\beta _{1})q^{5}+(2+\beta _{2})q^{7}+11q^{11}+\cdots

Decomposition of S4old(Γ0(792))S_{4}^{\mathrm{old}}(\Gamma_0(792)) into lower level spaces

S4old(Γ0(792)) S_{4}^{\mathrm{old}}(\Gamma_0(792)) \simeq S4new(Γ0(6))S_{4}^{\mathrm{new}}(\Gamma_0(6))12^{\oplus 12}\oplusS4new(Γ0(8))S_{4}^{\mathrm{new}}(\Gamma_0(8))6^{\oplus 6}\oplusS4new(Γ0(9))S_{4}^{\mathrm{new}}(\Gamma_0(9))8^{\oplus 8}\oplusS4new(Γ0(11))S_{4}^{\mathrm{new}}(\Gamma_0(11))12^{\oplus 12}\oplusS4new(Γ0(12))S_{4}^{\mathrm{new}}(\Gamma_0(12))8^{\oplus 8}\oplusS4new(Γ0(18))S_{4}^{\mathrm{new}}(\Gamma_0(18))6^{\oplus 6}\oplusS4new(Γ0(22))S_{4}^{\mathrm{new}}(\Gamma_0(22))9^{\oplus 9}\oplusS4new(Γ0(24))S_{4}^{\mathrm{new}}(\Gamma_0(24))4^{\oplus 4}\oplusS4new(Γ0(33))S_{4}^{\mathrm{new}}(\Gamma_0(33))8^{\oplus 8}\oplusS4new(Γ0(36))S_{4}^{\mathrm{new}}(\Gamma_0(36))4^{\oplus 4}\oplusS4new(Γ0(44))S_{4}^{\mathrm{new}}(\Gamma_0(44))6^{\oplus 6}\oplusS4new(Γ0(66))S_{4}^{\mathrm{new}}(\Gamma_0(66))6^{\oplus 6}\oplusS4new(Γ0(72))S_{4}^{\mathrm{new}}(\Gamma_0(72))2^{\oplus 2}\oplusS4new(Γ0(88))S_{4}^{\mathrm{new}}(\Gamma_0(88))3^{\oplus 3}\oplusS4new(Γ0(99))S_{4}^{\mathrm{new}}(\Gamma_0(99))4^{\oplus 4}\oplusS4new(Γ0(132))S_{4}^{\mathrm{new}}(\Gamma_0(132))4^{\oplus 4}\oplusS4new(Γ0(198))S_{4}^{\mathrm{new}}(\Gamma_0(198))3^{\oplus 3}\oplusS4new(Γ0(264))S_{4}^{\mathrm{new}}(\Gamma_0(264))2^{\oplus 2}\oplusS4new(Γ0(396))S_{4}^{\mathrm{new}}(\Gamma_0(396))2^{\oplus 2}