Defining parameters
Level: | \( N \) | \(=\) | \( 7920 = 2^{4} \cdot 3^{2} \cdot 5 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 7920.cc (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 40 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 0 \) | ||
Sturm bound: | \(3456\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(7920, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 3520 | 0 | 3520 |
Cusp forms | 3392 | 0 | 3392 |
Eisenstein series | 128 | 0 | 128 |
Decomposition of \(S_{2}^{\mathrm{old}}(7920, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(7920, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(120, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(360, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(440, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1320, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(3960, [\chi])\)\(^{\oplus 2}\)