Properties

Label 7920.2.f
Level $7920$
Weight $2$
Character orbit 7920.f
Rep. character $\chi_{7920}(3761,\cdot)$
Character field $\Q$
Dimension $96$
Newform subspaces $8$
Sturm bound $3456$
Trace bound $31$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 7920 = 2^{4} \cdot 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7920.f (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 33 \)
Character field: \(\Q\)
Newform subspaces: \( 8 \)
Sturm bound: \(3456\)
Trace bound: \(31\)
Distinguishing \(T_p\): \(7\), \(17\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(7920, [\chi])\).

Total New Old
Modular forms 1776 96 1680
Cusp forms 1680 96 1584
Eisenstein series 96 0 96

Trace form

\( 96 q - 96 q^{25} - 96 q^{49} + 32 q^{67} - 96 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(7920, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
7920.2.f.a 7920.f 33.d $8$ $63.242$ 8.0.4328587264.1 None 990.2.d.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{5}+(-\beta _{5}-\beta _{7})q^{7}+(2\beta _{1}+\beta _{2}+\cdots)q^{11}+\cdots\)
7920.2.f.b 7920.f 33.d $8$ $63.242$ 8.0.4328587264.1 None 990.2.d.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{1}q^{5}+(-\beta _{5}-\beta _{7})q^{7}+(-2\beta _{1}+\cdots)q^{11}+\cdots\)
7920.2.f.c 7920.f 33.d $12$ $63.242$ \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None 3960.2.f.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{5}+(\beta _{1}+\beta _{5})q^{7}+(\beta _{1}+\beta _{9})q^{11}+\cdots\)
7920.2.f.d 7920.f 33.d $12$ $63.242$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 3960.2.f.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{5}q^{5}+(-\beta _{1}-\beta _{4}-\beta _{5}+\beta _{6}-\beta _{7}+\cdots)q^{7}+\cdots\)
7920.2.f.e 7920.f 33.d $12$ $63.242$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 3960.2.f.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{5}q^{5}+(-\beta _{1}-\beta _{4}-\beta _{5}+\beta _{6}-\beta _{7}+\cdots)q^{7}+\cdots\)
7920.2.f.f 7920.f 33.d $12$ $63.242$ \(\mathbb{Q}[x]/(x^{12} + \cdots)\) None 3960.2.f.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{1}q^{5}+(\beta _{1}+\beta _{5})q^{7}+(-\beta _{1}-\beta _{9}+\cdots)q^{11}+\cdots\)
7920.2.f.g 7920.f 33.d $16$ $63.242$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 495.2.f.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{5}q^{5}+(\beta _{1}+\beta _{14})q^{7}+(\beta _{4}+\beta _{5}+\cdots)q^{11}+\cdots\)
7920.2.f.h 7920.f 33.d $16$ $63.242$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 1980.2.d.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{3}q^{5}+(-\beta _{7}-\beta _{10})q^{7}+(-\beta _{8}+\cdots)q^{11}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(7920, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(7920, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(33, [\chi])\)\(^{\oplus 20}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(66, [\chi])\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(99, [\chi])\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(132, [\chi])\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(165, [\chi])\)\(^{\oplus 10}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(198, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(264, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(330, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(396, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(495, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(528, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(660, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(792, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(990, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1320, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1584, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1980, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(2640, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(3960, [\chi])\)\(^{\oplus 2}\)