Defining parameters
Level: | \( N \) | \(=\) | \( 7920 = 2^{4} \cdot 3^{2} \cdot 5 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 7920.fj (of order \(10\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 440 \) |
Character field: | \(\Q(\zeta_{10})\) | ||
Newform subspaces: | \( 0 \) | ||
Sturm bound: | \(3456\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(7920, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 7040 | 0 | 7040 |
Cusp forms | 6784 | 0 | 6784 |
Eisenstein series | 256 | 0 | 256 |
Decomposition of \(S_{2}^{\mathrm{old}}(7920, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(7920, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(440, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1320, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(3960, [\chi])\)\(^{\oplus 2}\)