Defining parameters
Level: | \( N \) | \(=\) | \( 798 = 2 \cdot 3 \cdot 7 \cdot 19 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 798.bx (of order \(18\) and degree \(6\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 133 \) |
Character field: | \(\Q(\zeta_{18})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(320\) | ||
Trace bound: | \(10\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(798, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1008 | 168 | 840 |
Cusp forms | 912 | 168 | 744 |
Eisenstein series | 96 | 0 | 96 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(798, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
798.2.bx.a | $84$ | $6.372$ | None | \(0\) | \(0\) | \(0\) | \(-6\) | ||
798.2.bx.b | $84$ | $6.372$ | None | \(0\) | \(0\) | \(0\) | \(-6\) |
Decomposition of \(S_{2}^{\mathrm{old}}(798, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(798, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(133, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(266, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(399, [\chi])\)\(^{\oplus 2}\)