Properties

Label 8.10.b
Level $8$
Weight $10$
Character orbit 8.b
Rep. character $\chi_{8}(5,\cdot)$
Character field $\Q$
Dimension $8$
Newform subspaces $1$
Sturm bound $10$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 8 = 2^{3} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 8.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 8 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(10\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{10}(8, [\chi])\).

Total New Old
Modular forms 10 10 0
Cusp forms 8 8 0
Eisenstein series 2 2 0

Trace form

\( 8 q - 18 q^{2} - 428 q^{4} + 4684 q^{6} + 4800 q^{7} - 3384 q^{8} - 39368 q^{9} + 26392 q^{10} + 54760 q^{12} - 72336 q^{14} - 163136 q^{15} + 185616 q^{16} - 102000 q^{17} - 23614 q^{18} + 1245264 q^{20}+ \cdots - 3062604162 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{10}^{\mathrm{new}}(8, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
8.10.b.a 8.b 8.b $8$ $4.120$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 8.10.b.a \(-18\) \(0\) \(0\) \(4800\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-2-\beta _{1})q^{2}+(\beta _{1}+\beta _{3})q^{3}+(-54+\cdots)q^{4}+\cdots\)