Properties

Label 8.11
Level 8
Weight 11
Dimension 9
Nonzero newspaces 1
Newform subspaces 2
Sturm bound 44
Trace bound 0

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 8 = 2^{3} \)
Weight: \( k \) = \( 11 \)
Nonzero newspaces: \( 1 \)
Newform subspaces: \( 2 \)
Sturm bound: \(44\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{11}(\Gamma_1(8))\).

Total New Old
Modular forms 23 11 12
Cusp forms 17 9 8
Eisenstein series 6 2 4

Trace form

\( 9 q + 10 q^{2} - 2 q^{3} + 1236 q^{4} + 10012 q^{6} - 32840 q^{8} + 137779 q^{9} + 9120 q^{10} + 45902 q^{11} - 313448 q^{12} - 400320 q^{14} - 938736 q^{16} + 452882 q^{17} - 2477042 q^{18} + 5107038 q^{19}+ \cdots - 30528237382 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{11}^{\mathrm{new}}(\Gamma_1(8))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
8.11.c \(\chi_{8}(7, \cdot)\) None 0 1
8.11.d \(\chi_{8}(3, \cdot)\) 8.11.d.a 1 1
8.11.d.b 8

Decomposition of \(S_{11}^{\mathrm{old}}(\Gamma_1(8))\) into lower level spaces

\( S_{11}^{\mathrm{old}}(\Gamma_1(8)) \cong \) \(S_{11}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{11}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 3}\)\(\oplus\)\(S_{11}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 2}\)\(\oplus\)\(S_{11}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 1}\)