Properties

Label 8.12.a
Level $8$
Weight $12$
Character orbit 8.a
Rep. character $\chi_{8}(1,\cdot)$
Character field $\Q$
Dimension $3$
Newform subspaces $2$
Sturm bound $12$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 8 = 2^{3} \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 8.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(12\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{12}(\Gamma_0(8))\).

Total New Old
Modular forms 13 3 10
Cusp forms 9 3 6
Eisenstein series 4 0 4

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)Dim
\(+\)\(2\)
\(-\)\(1\)

Trace form

\( 3 q + 20 q^{3} + 4378 q^{5} + 35592 q^{7} + 364351 q^{9} - 437924 q^{11} + 2424354 q^{13} - 10369192 q^{15} + 11571734 q^{17} - 29163996 q^{19} + 42049248 q^{21} + 3749272 q^{23} + 25230069 q^{25} + 67917320 q^{27}+ \cdots + 113298667660 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{12}^{\mathrm{new}}(\Gamma_0(8))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2
8.12.a.a 8.a 1.a $1$ $6.147$ \(\Q\) None 8.12.a.a \(0\) \(-36\) \(-3490\) \(-55464\) $-$ $\mathrm{SU}(2)$ \(q-6^{2}q^{3}-3490q^{5}-55464q^{7}-175851q^{9}+\cdots\)
8.12.a.b 8.a 1.a $2$ $6.147$ \(\Q(\sqrt{109}) \) None 8.12.a.b \(0\) \(56\) \(7868\) \(91056\) $+$ $\mathrm{SU}(2)$ \(q+(28+\beta )q^{3}+(3934-12\beta )q^{5}+(45528+\cdots)q^{7}+\cdots\)

Decomposition of \(S_{12}^{\mathrm{old}}(\Gamma_0(8))\) into lower level spaces

\( S_{12}^{\mathrm{old}}(\Gamma_0(8)) \simeq \) \(S_{12}^{\mathrm{new}}(\Gamma_0(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{12}^{\mathrm{new}}(\Gamma_0(4))\)\(^{\oplus 2}\)