Defining parameters
Level: | \( N \) | \(=\) | \( 80 = 2^{4} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 11 \) |
Character orbit: | \([\chi]\) | \(=\) | 80.p (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 7 \) | ||
Sturm bound: | \(132\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{11}(80, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 252 | 62 | 190 |
Cusp forms | 228 | 58 | 170 |
Eisenstein series | 24 | 4 | 20 |
Trace form
Decomposition of \(S_{11}^{\mathrm{new}}(80, [\chi])\) into newform subspaces
Decomposition of \(S_{11}^{\mathrm{old}}(80, [\chi])\) into lower level spaces
\( S_{11}^{\mathrm{old}}(80, [\chi]) \simeq \) \(S_{11}^{\mathrm{new}}(5, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{11}^{\mathrm{new}}(10, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{11}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{11}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 2}\)