Properties

Label 80.11.p
Level $80$
Weight $11$
Character orbit 80.p
Rep. character $\chi_{80}(17,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $58$
Newform subspaces $7$
Sturm bound $132$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 80 = 2^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 11 \)
Character orbit: \([\chi]\) \(=\) 80.p (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 7 \)
Sturm bound: \(132\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{11}(80, [\chi])\).

Total New Old
Modular forms 252 62 190
Cusp forms 228 58 170
Eisenstein series 24 4 20

Trace form

\( 58 q + 2 q^{3} - 2 q^{5} + 2 q^{7} + 4 q^{11} + 145666 q^{13} - 2076430 q^{15} + 452882 q^{17} + 5907276 q^{21} + 16246034 q^{23} - 738494 q^{25} - 31101232 q^{27} - 58368316 q^{31} + 45212092 q^{33} + 34205714 q^{35}+ \cdots + 9668205978 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{11}^{\mathrm{new}}(80, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
80.11.p.a 80.p 5.c $2$ $50.829$ \(\Q(\sqrt{-1}) \) None 10.11.c.b \(0\) \(-114\) \(5850\) \(-13906\) $\mathrm{SU}(2)[C_{4}]$ \(q+(57 i-57)q^{3}+(1100 i+2925)q^{5}+\cdots\)
80.11.p.b 80.p 5.c $2$ $50.829$ \(\Q(\sqrt{-1}) \) None 10.11.c.a \(0\) \(366\) \(-3750\) \(16814\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-183 i+183)q^{3}+(-2500 i-1875)q^{5}+\cdots\)
80.11.p.c 80.p 5.c $6$ $50.829$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 10.11.c.c \(0\) \(-128\) \(5460\) \(-13512\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-21-21\beta _{1}-\beta _{3})q^{3}+(910+896\beta _{1}+\cdots)q^{5}+\cdots\)
80.11.p.d 80.p 5.c $8$ $50.829$ \(\mathbb{Q}[x]/(x^{8} + \cdots)\) None 5.11.c.a \(0\) \(-60\) \(-5340\) \(14500\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-7-7\beta _{1}+\beta _{2})q^{3}+(-665-10^{3}\beta _{1}+\cdots)q^{5}+\cdots\)
80.11.p.e 80.p 5.c $10$ $50.829$ \(\mathbb{Q}[x]/(x^{10} + \cdots)\) None 20.11.f.a \(0\) \(-62\) \(894\) \(-22286\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-6-6\beta _{1}-\beta _{2})q^{3}+(90-174\beta _{1}+\cdots)q^{5}+\cdots\)
80.11.p.f 80.p 5.c $14$ $50.829$ \(\mathbb{Q}[x]/(x^{14} - \cdots)\) None 40.11.l.a \(0\) \(190\) \(-510\) \(4646\) $\mathrm{SU}(2)[C_{4}]$ \(q+(14-14\beta _{1}-\beta _{2})q^{3}+(-6^{2}-271\beta _{1}+\cdots)q^{5}+\cdots\)
80.11.p.g 80.p 5.c $16$ $50.829$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 40.11.l.b \(0\) \(-190\) \(-2606\) \(13746\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-12+12\beta _{1}+\beta _{2})q^{3}+(-163+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{11}^{\mathrm{old}}(80, [\chi])\) into lower level spaces

\( S_{11}^{\mathrm{old}}(80, [\chi]) \simeq \) \(S_{11}^{\mathrm{new}}(5, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{11}^{\mathrm{new}}(10, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{11}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{11}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 2}\)