Properties

Label 80.20.a
Level $80$
Weight $20$
Character orbit 80.a
Rep. character $\chi_{80}(1,\cdot)$
Character field $\Q$
Dimension $38$
Newform subspaces $12$
Sturm bound $240$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 80 = 2^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 20 \)
Character orbit: \([\chi]\) \(=\) 80.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 12 \)
Sturm bound: \(240\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{20}(\Gamma_0(80))\).

Total New Old
Modular forms 234 38 196
Cusp forms 222 38 184
Eisenstein series 12 0 12

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(5\)FrickeDim
\(+\)\(+\)\(+\)\(10\)
\(+\)\(-\)\(-\)\(9\)
\(-\)\(+\)\(-\)\(9\)
\(-\)\(-\)\(+\)\(10\)
Plus space\(+\)\(20\)
Minus space\(-\)\(18\)

Trace form

\( 38 q - 39366 q^{3} + 287433906 q^{7} + 16340925866 q^{9} + 11401439596 q^{11} + 76886718750 q^{15} - 673857170572 q^{17} + 1879708750272 q^{19} - 1653150431356 q^{21} + 23790953521510 q^{23} + 144958496093750 q^{25}+ \cdots + 26\!\cdots\!40 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{20}^{\mathrm{new}}(\Gamma_0(80))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 5
80.20.a.a 80.a 1.a $1$ $183.053$ \(\Q\) None 10.20.a.b \(0\) \(-38628\) \(1953125\) \(144185776\) $-$ $-$ $\mathrm{SU}(2)$ \(q-38628q^{3}+5^{9}q^{5}+144185776q^{7}+\cdots\)
80.20.a.b 80.a 1.a $1$ $183.053$ \(\Q\) None 10.20.a.c \(0\) \(-24642\) \(-1953125\) \(171901114\) $-$ $+$ $\mathrm{SU}(2)$ \(q-24642q^{3}-5^{9}q^{5}+171901114q^{7}+\cdots\)
80.20.a.c 80.a 1.a $1$ $183.053$ \(\Q\) None 10.20.a.a \(0\) \(26622\) \(-1953125\) \(39884026\) $-$ $+$ $\mathrm{SU}(2)$ \(q+26622q^{3}-5^{9}q^{5}+39884026q^{7}+\cdots\)
80.20.a.d 80.a 1.a $2$ $183.053$ \(\mathbb{Q}[x]/(x^{2} - \cdots)\) None 10.20.a.d \(0\) \(-33724\) \(3906250\) \(-83061292\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(-16862-\beta )q^{3}+5^{9}q^{5}+(-41530646+\cdots)q^{7}+\cdots\)
80.20.a.e 80.a 1.a $3$ $183.053$ \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None 20.20.a.a \(0\) \(-34086\) \(-5859375\) \(115130574\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(-11362-\beta _{1})q^{3}-5^{9}q^{5}+(38376858+\cdots)q^{7}+\cdots\)
80.20.a.f 80.a 1.a $3$ $183.053$ \(\mathbb{Q}[x]/(x^{3} - \cdots)\) None 5.20.a.a \(0\) \(73452\) \(5859375\) \(54910456\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(24485+\beta _{1}+3\beta _{2})q^{3}+5^{9}q^{5}+\cdots\)
80.20.a.g 80.a 1.a $4$ $183.053$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 5.20.a.b \(0\) \(-3080\) \(-7812500\) \(-214021400\) $-$ $+$ $\mathrm{SU}(2)$ \(q+(-770-\beta _{1})q^{3}-5^{9}q^{5}+(-53505350+\cdots)q^{7}+\cdots\)
80.20.a.h 80.a 1.a $4$ $183.053$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 20.20.a.b \(0\) \(3080\) \(7812500\) \(-148222040\) $-$ $-$ $\mathrm{SU}(2)$ \(q+(770-\beta _{1})q^{3}+5^{9}q^{5}+(-37055510+\cdots)q^{7}+\cdots\)
80.20.a.i 80.a 1.a $4$ $183.053$ \(\mathbb{Q}[x]/(x^{4} - \cdots)\) None 40.20.a.a \(0\) \(46152\) \(7812500\) \(-59073944\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(11538-\beta _{1})q^{3}+5^{9}q^{5}+(-14768486+\cdots)q^{7}+\cdots\)
80.20.a.j 80.a 1.a $5$ $183.053$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 40.20.a.d \(0\) \(-50332\) \(9765625\) \(113917176\) $+$ $-$ $\mathrm{SU}(2)$ \(q+(-10066+\beta _{1})q^{3}+5^{9}q^{5}+(22783495+\cdots)q^{7}+\cdots\)
80.20.a.k 80.a 1.a $5$ $183.053$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 40.20.a.c \(0\) \(-21298\) \(-9765625\) \(88371034\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(-4260+\beta _{1})q^{3}-5^{9}q^{5}+(17674394+\cdots)q^{7}+\cdots\)
80.20.a.l 80.a 1.a $5$ $183.053$ \(\mathbb{Q}[x]/(x^{5} - \cdots)\) None 40.20.a.b \(0\) \(17118\) \(-9765625\) \(63512426\) $+$ $+$ $\mathrm{SU}(2)$ \(q+(3424-\beta _{1})q^{3}-5^{9}q^{5}+(12703124+\cdots)q^{7}+\cdots\)

Decomposition of \(S_{20}^{\mathrm{old}}(\Gamma_0(80))\) into lower level spaces

\( S_{20}^{\mathrm{old}}(\Gamma_0(80)) \simeq \) \(S_{20}^{\mathrm{new}}(\Gamma_0(1))\)\(^{\oplus 10}\)\(\oplus\)\(S_{20}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 8}\)\(\oplus\)\(S_{20}^{\mathrm{new}}(\Gamma_0(4))\)\(^{\oplus 6}\)\(\oplus\)\(S_{20}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 5}\)\(\oplus\)\(S_{20}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 4}\)\(\oplus\)\(S_{20}^{\mathrm{new}}(\Gamma_0(10))\)\(^{\oplus 4}\)\(\oplus\)\(S_{20}^{\mathrm{new}}(\Gamma_0(16))\)\(^{\oplus 2}\)\(\oplus\)\(S_{20}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 3}\)\(\oplus\)\(S_{20}^{\mathrm{new}}(\Gamma_0(40))\)\(^{\oplus 2}\)