Defining parameters
Level: | \( N \) | \(=\) | \( 80 = 2^{4} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 20 \) |
Character orbit: | \([\chi]\) | \(=\) | 80.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 12 \) | ||
Sturm bound: | \(240\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{20}(\Gamma_0(80))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 234 | 38 | 196 |
Cusp forms | 222 | 38 | 184 |
Eisenstein series | 12 | 0 | 12 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(5\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(10\) |
\(+\) | \(-\) | \(-\) | \(9\) |
\(-\) | \(+\) | \(-\) | \(9\) |
\(-\) | \(-\) | \(+\) | \(10\) |
Plus space | \(+\) | \(20\) | |
Minus space | \(-\) | \(18\) |
Trace form
Decomposition of \(S_{20}^{\mathrm{new}}(\Gamma_0(80))\) into newform subspaces
Decomposition of \(S_{20}^{\mathrm{old}}(\Gamma_0(80))\) into lower level spaces
\( S_{20}^{\mathrm{old}}(\Gamma_0(80)) \simeq \) \(S_{20}^{\mathrm{new}}(\Gamma_0(1))\)\(^{\oplus 10}\)\(\oplus\)\(S_{20}^{\mathrm{new}}(\Gamma_0(2))\)\(^{\oplus 8}\)\(\oplus\)\(S_{20}^{\mathrm{new}}(\Gamma_0(4))\)\(^{\oplus 6}\)\(\oplus\)\(S_{20}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 5}\)\(\oplus\)\(S_{20}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 4}\)\(\oplus\)\(S_{20}^{\mathrm{new}}(\Gamma_0(10))\)\(^{\oplus 4}\)\(\oplus\)\(S_{20}^{\mathrm{new}}(\Gamma_0(16))\)\(^{\oplus 2}\)\(\oplus\)\(S_{20}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 3}\)\(\oplus\)\(S_{20}^{\mathrm{new}}(\Gamma_0(40))\)\(^{\oplus 2}\)