Defining parameters
Level: | \( N \) | \(=\) | \( 80 = 2^{4} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 5 \) |
Character orbit: | \([\chi]\) | \(=\) | 80.h (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 20 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(60\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{5}(80, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 54 | 12 | 42 |
Cusp forms | 42 | 12 | 30 |
Eisenstein series | 12 | 0 | 12 |
Trace form
Decomposition of \(S_{5}^{\mathrm{new}}(80, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
80.5.h.a | $2$ | $8.270$ | \(\Q(\sqrt{5}) \) | \(\Q(\sqrt{-5}) \) | \(0\) | \(0\) | \(-50\) | \(0\) | \(q-\beta q^{3}-5^{2}q^{5}-3\beta q^{7}+239q^{9}+\cdots\) |
80.5.h.b | $2$ | $8.270$ | \(\Q(\sqrt{-1}) \) | \(\Q(\sqrt{-1}) \) | \(0\) | \(0\) | \(14\) | \(0\) | \(q+(\beta+7)q^{5}-81 q^{9}+10\beta q^{13}+\cdots\) |
80.5.h.c | $8$ | $8.270$ | 8.0.\(\cdots\).10 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{3}q^{3}+\beta _{4}q^{5}+(2\beta _{3}-\beta _{7})q^{7}+(1+\cdots)q^{9}+\cdots\) |
Decomposition of \(S_{5}^{\mathrm{old}}(80, [\chi])\) into lower level spaces
\( S_{5}^{\mathrm{old}}(80, [\chi]) \simeq \) \(S_{5}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 3}\)