Properties

Label 80.5.h
Level $80$
Weight $5$
Character orbit 80.h
Rep. character $\chi_{80}(79,\cdot)$
Character field $\Q$
Dimension $12$
Newform subspaces $3$
Sturm bound $60$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 80 = 2^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 80.h (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 20 \)
Character field: \(\Q\)
Newform subspaces: \( 3 \)
Sturm bound: \(60\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{5}(80, [\chi])\).

Total New Old
Modular forms 54 12 42
Cusp forms 42 12 30
Eisenstein series 12 0 12

Trace form

\( 12 q - 36 q^{5} + 324 q^{9} + 912 q^{21} + 1356 q^{25} - 936 q^{29} - 2952 q^{41} - 6924 q^{45} + 132 q^{49} - 6600 q^{61} + 11520 q^{65} - 624 q^{69} + 34716 q^{81} - 3840 q^{85} - 11880 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{5}^{\mathrm{new}}(80, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
80.5.h.a 80.h 20.d $2$ $8.270$ \(\Q(\sqrt{5}) \) \(\Q(\sqrt{-5}) \) 80.5.h.a \(0\) \(0\) \(-50\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q-\beta q^{3}-5^{2}q^{5}-3\beta q^{7}+239q^{9}+\cdots\)
80.5.h.b 80.h 20.d $2$ $8.270$ \(\Q(\sqrt{-1}) \) \(\Q(\sqrt{-1}) \) 80.5.h.b \(0\) \(0\) \(14\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q+(\beta+7)q^{5}-81 q^{9}+10\beta q^{13}+\cdots\)
80.5.h.c 80.h 20.d $8$ $8.270$ 8.0.\(\cdots\).10 None 80.5.h.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{3}q^{3}+\beta _{4}q^{5}+(2\beta _{3}-\beta _{7})q^{7}+(1+\cdots)q^{9}+\cdots\)

Decomposition of \(S_{5}^{\mathrm{old}}(80, [\chi])\) into lower level spaces

\( S_{5}^{\mathrm{old}}(80, [\chi]) \simeq \) \(S_{5}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 3}\)