Defining parameters
Level: | \( N \) | \(=\) | \( 80 = 2^{4} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 80.c (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(72\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(80, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 66 | 16 | 50 |
Cusp forms | 54 | 14 | 40 |
Eisenstein series | 12 | 2 | 10 |
Trace form
Decomposition of \(S_{6}^{\mathrm{new}}(80, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
80.6.c.a | $2$ | $12.831$ | \(\Q(\sqrt{-11}) \) | None | \(0\) | \(0\) | \(-90\) | \(0\) | \(q-3\beta q^{3}+(-45-5\beta )q^{5}-9\beta q^{7}+\cdots\) |
80.6.c.b | $2$ | $12.831$ | \(\Q(\sqrt{-31}) \) | None | \(0\) | \(0\) | \(-10\) | \(0\) | \(q-\beta q^{3}+(-5+5\beta )q^{5}-11\beta q^{7}+119q^{9}+\cdots\) |
80.6.c.c | $2$ | $12.831$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(110\) | \(0\) | \(q+7\beta q^{3}+(-5\beta+55)q^{5}-79\beta q^{7}+\cdots\) |
80.6.c.d | $8$ | $12.831$ | \(\mathbb{Q}[x]/(x^{8} + \cdots)\) | None | \(0\) | \(0\) | \(8\) | \(0\) | \(q+\beta _{1}q^{3}+(1-\beta _{2})q^{5}+(-\beta _{2}-\beta _{6}+\cdots)q^{7}+\cdots\) |
Decomposition of \(S_{6}^{\mathrm{old}}(80, [\chi])\) into lower level spaces
\( S_{6}^{\mathrm{old}}(80, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(5, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(10, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 2}\)