Properties

Label 80.6.c
Level $80$
Weight $6$
Character orbit 80.c
Rep. character $\chi_{80}(49,\cdot)$
Character field $\Q$
Dimension $14$
Newform subspaces $4$
Sturm bound $72$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 80 = 2^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 80.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(72\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(80, [\chi])\).

Total New Old
Modular forms 66 16 50
Cusp forms 54 14 40
Eisenstein series 12 2 10

Trace form

\( 14 q + 18 q^{5} - 974 q^{9} + 728 q^{11} + 1192 q^{15} - 984 q^{19} + 1304 q^{21} - 586 q^{25} + 8260 q^{29} - 9344 q^{31} - 12712 q^{35} + 10544 q^{39} + 3580 q^{41} - 10578 q^{45} - 31222 q^{49} + 73088 q^{51}+ \cdots - 152024 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(80, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
80.6.c.a 80.c 5.b $2$ $12.831$ \(\Q(\sqrt{-11}) \) None 5.6.b.a \(0\) \(0\) \(-90\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-3\beta q^{3}+(-45-5\beta )q^{5}-9\beta q^{7}+\cdots\)
80.6.c.b 80.c 5.b $2$ $12.831$ \(\Q(\sqrt{-31}) \) None 20.6.c.a \(0\) \(0\) \(-10\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta q^{3}+(-5+5\beta )q^{5}-11\beta q^{7}+119q^{9}+\cdots\)
80.6.c.c 80.c 5.b $2$ $12.831$ \(\Q(\sqrt{-1}) \) None 10.6.b.a \(0\) \(0\) \(110\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+7\beta q^{3}+(-5\beta+55)q^{5}-79\beta q^{7}+\cdots\)
80.6.c.d 80.c 5.b $8$ $12.831$ \(\mathbb{Q}[x]/(x^{8} + \cdots)\) None 40.6.c.a \(0\) \(0\) \(8\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{3}+(1-\beta _{2})q^{5}+(-\beta _{2}-\beta _{6}+\cdots)q^{7}+\cdots\)

Decomposition of \(S_{6}^{\mathrm{old}}(80, [\chi])\) into lower level spaces

\( S_{6}^{\mathrm{old}}(80, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(5, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(10, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 2}\)