Properties

Label 80.7
Level 80
Weight 7
Dimension 580
Nonzero newspaces 7
Newform subspaces 15
Sturm bound 2688
Trace bound 3

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 80 = 2^{4} \cdot 5 \)
Weight: \( k \) = \( 7 \)
Nonzero newspaces: \( 7 \)
Newform subspaces: \( 15 \)
Sturm bound: \(2688\)
Trace bound: \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{7}(\Gamma_1(80))\).

Total New Old
Modular forms 1208 608 600
Cusp forms 1096 580 516
Eisenstein series 112 28 84

Trace form

\( 580 q - 4 q^{2} - 2 q^{3} - 184 q^{4} + 58 q^{5} + 1008 q^{6} + 2 q^{7} - 1936 q^{8} - 1302 q^{9} + 1116 q^{10} - 2728 q^{11} + 4688 q^{12} + 5862 q^{13} - 15136 q^{14} - 1398 q^{15} + 15936 q^{16} - 18086 q^{17}+ \cdots + 4794564 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{7}^{\mathrm{new}}(\Gamma_1(80))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
80.7.b \(\chi_{80}(31, \cdot)\) 80.7.b.a 4 1
80.7.b.b 8
80.7.e \(\chi_{80}(39, \cdot)\) None 0 1
80.7.g \(\chi_{80}(71, \cdot)\) None 0 1
80.7.h \(\chi_{80}(79, \cdot)\) 80.7.h.a 2 1
80.7.h.b 4
80.7.h.c 12
80.7.i \(\chi_{80}(13, \cdot)\) 80.7.i.a 140 2
80.7.k \(\chi_{80}(19, \cdot)\) 80.7.k.a 140 2
80.7.m \(\chi_{80}(57, \cdot)\) None 0 2
80.7.p \(\chi_{80}(17, \cdot)\) 80.7.p.a 2 2
80.7.p.b 4
80.7.p.c 4
80.7.p.d 6
80.7.p.e 8
80.7.p.f 10
80.7.r \(\chi_{80}(11, \cdot)\) 80.7.r.a 96 2
80.7.t \(\chi_{80}(53, \cdot)\) 80.7.t.a 140 2

Decomposition of \(S_{7}^{\mathrm{old}}(\Gamma_1(80))\) into lower level spaces

\( S_{7}^{\mathrm{old}}(\Gamma_1(80)) \cong \) \(S_{7}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 10}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 8}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 6}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 5}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 4}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 4}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 2}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 3}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(40))\)\(^{\oplus 2}\)