Defining parameters
Level: | \( N \) | = | \( 80 = 2^{4} \cdot 5 \) |
Weight: | \( k \) | = | \( 7 \) |
Nonzero newspaces: | \( 7 \) | ||
Newform subspaces: | \( 15 \) | ||
Sturm bound: | \(2688\) | ||
Trace bound: | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{7}(\Gamma_1(80))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1208 | 608 | 600 |
Cusp forms | 1096 | 580 | 516 |
Eisenstein series | 112 | 28 | 84 |
Trace form
Decomposition of \(S_{7}^{\mathrm{new}}(\Gamma_1(80))\)
We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
80.7.b | \(\chi_{80}(31, \cdot)\) | 80.7.b.a | 4 | 1 |
80.7.b.b | 8 | |||
80.7.e | \(\chi_{80}(39, \cdot)\) | None | 0 | 1 |
80.7.g | \(\chi_{80}(71, \cdot)\) | None | 0 | 1 |
80.7.h | \(\chi_{80}(79, \cdot)\) | 80.7.h.a | 2 | 1 |
80.7.h.b | 4 | |||
80.7.h.c | 12 | |||
80.7.i | \(\chi_{80}(13, \cdot)\) | 80.7.i.a | 140 | 2 |
80.7.k | \(\chi_{80}(19, \cdot)\) | 80.7.k.a | 140 | 2 |
80.7.m | \(\chi_{80}(57, \cdot)\) | None | 0 | 2 |
80.7.p | \(\chi_{80}(17, \cdot)\) | 80.7.p.a | 2 | 2 |
80.7.p.b | 4 | |||
80.7.p.c | 4 | |||
80.7.p.d | 6 | |||
80.7.p.e | 8 | |||
80.7.p.f | 10 | |||
80.7.r | \(\chi_{80}(11, \cdot)\) | 80.7.r.a | 96 | 2 |
80.7.t | \(\chi_{80}(53, \cdot)\) | 80.7.t.a | 140 | 2 |
Decomposition of \(S_{7}^{\mathrm{old}}(\Gamma_1(80))\) into lower level spaces
\( S_{7}^{\mathrm{old}}(\Gamma_1(80)) \cong \) \(S_{7}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 10}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 8}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 6}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 5}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 4}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 4}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 2}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 3}\)\(\oplus\)\(S_{7}^{\mathrm{new}}(\Gamma_1(40))\)\(^{\oplus 2}\)