Properties

Label 800.3.h
Level $800$
Weight $3$
Character orbit 800.h
Rep. character $\chi_{800}(799,\cdot)$
Character field $\Q$
Dimension $36$
Newform subspaces $10$
Sturm bound $360$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 800 = 2^{5} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 800.h (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 20 \)
Character field: \(\Q\)
Newform subspaces: \( 10 \)
Sturm bound: \(360\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(3\), \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(800, [\chi])\).

Total New Old
Modular forms 264 36 228
Cusp forms 216 36 180
Eisenstein series 48 0 48

Trace form

\( 36 q + 108 q^{9} - 32 q^{21} - 136 q^{29} + 152 q^{41} + 508 q^{49} + 200 q^{61} + 256 q^{69} - 92 q^{81} - 184 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(800, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
800.3.h.a 800.h 20.d $2$ $21.798$ \(\Q(\sqrt{-1}) \) None 32.3.c.a \(0\) \(-8\) \(0\) \(-16\) $\mathrm{SU}(2)[C_{2}]$ \(q-4 q^{3}-8 q^{7}+7 q^{9}-2\beta q^{11}+\cdots\)
800.3.h.b 800.h 20.d $2$ $21.798$ \(\Q(\sqrt{-1}) \) None 32.3.c.a \(0\) \(8\) \(0\) \(16\) $\mathrm{SU}(2)[C_{2}]$ \(q+4 q^{3}+8 q^{7}+7 q^{9}+2\beta q^{11}+\cdots\)
800.3.h.c 800.h 20.d $4$ $21.798$ \(\Q(i, \sqrt{5})\) None 160.3.b.a \(0\) \(-12\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-3+\beta _{3})q^{3}+(-1-5\beta _{3})q^{7}+(5+\cdots)q^{9}+\cdots\)
800.3.h.d 800.h 20.d $4$ $21.798$ \(\Q(i, \sqrt{11})\) None 800.3.b.b \(0\) \(-8\) \(0\) \(-16\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-2+\beta _{2})q^{3}+(-4+2\beta _{2})q^{7}+(6+\cdots)q^{9}+\cdots\)
800.3.h.e 800.h 20.d $4$ $21.798$ \(\Q(i, \sqrt{5})\) None 160.3.b.b \(0\) \(-4\) \(0\) \(4\) $\mathrm{SU}(2)[C_{2}]$ \(q+(-1+\beta _{3})q^{3}+(1-\beta _{3})q^{7}+(-3+\cdots)q^{9}+\cdots\)
800.3.h.f 800.h 20.d $4$ $21.798$ \(\Q(i, \sqrt{11})\) None 800.3.b.e \(0\) \(0\) \(0\) \(-16\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{2}q^{3}+(-4-2\beta _{2})q^{7}+2q^{9}+(8\beta _{1}+\cdots)q^{11}+\cdots\)
800.3.h.g 800.h 20.d $4$ $21.798$ \(\Q(i, \sqrt{11})\) None 800.3.b.e \(0\) \(0\) \(0\) \(16\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{2}q^{3}+(4+2\beta _{2})q^{7}+2q^{9}+(-8\beta _{1}+\cdots)q^{11}+\cdots\)
800.3.h.h 800.h 20.d $4$ $21.798$ \(\Q(i, \sqrt{5})\) None 160.3.b.b \(0\) \(4\) \(0\) \(-4\) $\mathrm{SU}(2)[C_{2}]$ \(q+(1-\beta _{3})q^{3}+(-1+\beta _{3})q^{7}+(-3+\cdots)q^{9}+\cdots\)
800.3.h.i 800.h 20.d $4$ $21.798$ \(\Q(i, \sqrt{11})\) None 800.3.b.b \(0\) \(8\) \(0\) \(16\) $\mathrm{SU}(2)[C_{2}]$ \(q+(2+\beta _{2})q^{3}+(4+2\beta _{2})q^{7}+(6+4\beta _{2}+\cdots)q^{9}+\cdots\)
800.3.h.j 800.h 20.d $4$ $21.798$ \(\Q(i, \sqrt{5})\) None 160.3.b.a \(0\) \(12\) \(0\) \(4\) $\mathrm{SU}(2)[C_{2}]$ \(q+(3-\beta _{3})q^{3}+(1+5\beta _{3})q^{7}+(5-6\beta _{3})q^{9}+\cdots\)

Decomposition of \(S_{3}^{\mathrm{old}}(800, [\chi])\) into lower level spaces

\( S_{3}^{\mathrm{old}}(800, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(80, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(100, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(160, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(400, [\chi])\)\(^{\oplus 2}\)