Defining parameters
Level: | \( N \) | \(=\) | \( 800 = 2^{5} \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 800.h (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 20 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 10 \) | ||
Sturm bound: | \(360\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(3\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(800, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 264 | 36 | 228 |
Cusp forms | 216 | 36 | 180 |
Eisenstein series | 48 | 0 | 48 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(800, [\chi])\) into newform subspaces
Decomposition of \(S_{3}^{\mathrm{old}}(800, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(800, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(80, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(100, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(160, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(400, [\chi])\)\(^{\oplus 2}\)