Defining parameters
Level: | \( N \) | \(=\) | \( 810 = 2 \cdot 3^{4} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 810.k (of order \(9\) and degree \(6\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 27 \) |
Character field: | \(\Q(\zeta_{9})\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(324\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(810, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1044 | 72 | 972 |
Cusp forms | 900 | 72 | 828 |
Eisenstein series | 144 | 0 | 144 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(810, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
810.2.k.a | $6$ | $6.468$ | \(\Q(\zeta_{18})\) | None | \(0\) | \(0\) | \(0\) | \(6\) | \(q+(\zeta_{18}-\zeta_{18}^{4})q^{2}-\zeta_{18}^{5}q^{4}+(\zeta_{18}^{2}+\cdots)q^{5}+\cdots\) |
810.2.k.b | $12$ | $6.468$ | 12.0.\(\cdots\).1 | None | \(0\) | \(0\) | \(0\) | \(-12\) | \(q-\beta _{7}q^{2}+\beta _{9}q^{4}+(-\beta _{8}+\beta _{9})q^{5}+\cdots\) |
810.2.k.c | $12$ | $6.468$ | 12.0.\(\cdots\).1 | None | \(0\) | \(0\) | \(0\) | \(6\) | \(q+(-\beta _{8}+\beta _{9})q^{2}+\beta _{7}q^{4}-\beta _{10}q^{5}+\cdots\) |
810.2.k.d | $18$ | $6.468$ | \(\mathbb{Q}[x]/(x^{18} - \cdots)\) | None | \(0\) | \(0\) | \(0\) | \(-3\) | \(q-\beta _{1}q^{2}-\beta _{2}q^{4}+(\beta _{2}+\beta _{4})q^{5}+(\beta _{1}+\cdots)q^{7}+\cdots\) |
810.2.k.e | $24$ | $6.468$ | None | \(0\) | \(0\) | \(0\) | \(3\) |
Decomposition of \(S_{2}^{\mathrm{old}}(810, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(810, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(27, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(54, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(81, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(135, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(162, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(270, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(405, [\chi])\)\(^{\oplus 2}\)