Properties

Label 810.2.k
Level $810$
Weight $2$
Character orbit 810.k
Rep. character $\chi_{810}(91,\cdot)$
Character field $\Q(\zeta_{9})$
Dimension $72$
Newform subspaces $5$
Sturm bound $324$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 810 = 2 \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 810.k (of order \(9\) and degree \(6\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 27 \)
Character field: \(\Q(\zeta_{9})\)
Newform subspaces: \( 5 \)
Sturm bound: \(324\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(7\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(810, [\chi])\).

Total New Old
Modular forms 1044 72 972
Cusp forms 900 72 828
Eisenstein series 144 0 144

Trace form

\( 72 q - 6 q^{8} - 18 q^{11} - 6 q^{14} - 24 q^{17} + 18 q^{22} + 72 q^{23} + 66 q^{29} + 18 q^{34} - 12 q^{35} + 12 q^{38} - 18 q^{41} + 18 q^{43} + 72 q^{47} + 18 q^{49} + 72 q^{53} - 6 q^{56} - 48 q^{59}+ \cdots - 30 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(810, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
810.2.k.a 810.k 27.e $6$ $6.468$ \(\Q(\zeta_{18})\) None 270.2.k.a \(0\) \(0\) \(0\) \(6\) $\mathrm{SU}(2)[C_{9}]$ \(q+(\zeta_{18}-\zeta_{18}^{4})q^{2}-\zeta_{18}^{5}q^{4}+(\zeta_{18}^{2}+\cdots)q^{5}+\cdots\)
810.2.k.b 810.k 27.e $12$ $6.468$ 12.0.\(\cdots\).1 None 270.2.k.b \(0\) \(0\) \(0\) \(-12\) $\mathrm{SU}(2)[C_{9}]$ \(q-\beta _{7}q^{2}+\beta _{9}q^{4}+(-\beta _{8}+\beta _{9})q^{5}+\cdots\)
810.2.k.c 810.k 27.e $12$ $6.468$ 12.0.\(\cdots\).1 None 270.2.k.c \(0\) \(0\) \(0\) \(6\) $\mathrm{SU}(2)[C_{9}]$ \(q+(-\beta _{8}+\beta _{9})q^{2}+\beta _{7}q^{4}-\beta _{10}q^{5}+\cdots\)
810.2.k.d 810.k 27.e $18$ $6.468$ \(\mathbb{Q}[x]/(x^{18} - \cdots)\) None 270.2.k.d \(0\) \(0\) \(0\) \(-3\) $\mathrm{SU}(2)[C_{9}]$ \(q-\beta _{1}q^{2}-\beta _{2}q^{4}+(\beta _{2}+\beta _{4})q^{5}+(\beta _{1}+\cdots)q^{7}+\cdots\)
810.2.k.e 810.k 27.e $24$ $6.468$ None 270.2.k.e \(0\) \(0\) \(0\) \(3\) $\mathrm{SU}(2)[C_{9}]$

Decomposition of \(S_{2}^{\mathrm{old}}(810, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(810, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(27, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(54, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(81, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(135, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(162, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(270, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(405, [\chi])\)\(^{\oplus 2}\)