Defining parameters
Level: | \( N \) | \(=\) | \( 810 = 2 \cdot 3^{4} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 810.w (of order \(108\) and degree \(36\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 405 \) |
Character field: | \(\Q(\zeta_{108})\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(324\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(810, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 5976 | 1944 | 4032 |
Cusp forms | 5688 | 1944 | 3744 |
Eisenstein series | 288 | 0 | 288 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(810, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
810.2.w.a | $1944$ | $6.468$ | None | \(0\) | \(0\) | \(0\) | \(0\) |
Decomposition of \(S_{2}^{\mathrm{old}}(810, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(810, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(405, [\chi])\)\(^{\oplus 2}\)